answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao

Add your answer:

Earn +20 pts
Q: Can a rational function have no vertical horizontal oblique asymptotes?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How many non-verticle asymptotes can a rational function have?

Not sure what non-verticle means, but a rational function can have up to 2 non-vertical asymptotes,


What are the slopes of the hyperbola's asymptotes?

If a hyperbola is vertical, the asymptotes have a slope of m = +- a/b. If a hyperbola is horizontal, the asymptotes have a slope of m = +- b/a.


How many vertical asymptotes can there be in a rational function?

Factoring is usually helpful in identifying zeros of denominators. If there are not common factors in the numerator and the denominator, the lines x equal the zeros of the denominator are the vertical asymptotes for the graph of the rational function. Example: f(x) = x/(x^2 - 1) f(x) = x/[(x + 1)(x - 1)] x + 1 = 0 or x - 1 = 0 x = -1 or x = 1 Thus, the lines x = -1 and x = 1 are the vertical asymptotes of f.


How do you find asymptotes of any function?

Definition: If lim x->a^(+/-) f(x) = +/- Infinity, then we say x=a is a vertical asymptote. If lim x->+/- Infinity f(x) = a, then we say f(x) have a horizontal asymptote at a If l(x) is a linear function such that lim x->+/- Infinity f(x)-l(x) = 0, then we say l(x) is a slanted asymptote. As you might notice, there is no generic method of finding asymptotes. Rational functions are really nice, and the non-permissible values are likely vertical asymptotes. Horizontal asymptotes should be easiest to approach, simply take limit at +/- Infinity Vertical Asymptote just find non-permissible values, and take limits towards it to check Slanted, most likely is educated guesses. If you get f(x) = some infinite sum, there is no reason why we should be able to to find an asymptote of it with out simplify and comparison etc.


A function has vertical asymptotes at x-values for which it is and near which the function's values become very positive or negative numbers?

Undefined; large