No, it will always have one.
Chat with our AI personalities
Not sure what non-verticle means, but a rational function can have up to 2 non-vertical asymptotes,
If a hyperbola is vertical, the asymptotes have a slope of m = +- a/b. If a hyperbola is horizontal, the asymptotes have a slope of m = +- b/a.
Factoring is usually helpful in identifying zeros of denominators. If there are not common factors in the numerator and the denominator, the lines x equal the zeros of the denominator are the vertical asymptotes for the graph of the rational function. Example: f(x) = x/(x^2 - 1) f(x) = x/[(x + 1)(x - 1)] x + 1 = 0 or x - 1 = 0 x = -1 or x = 1 Thus, the lines x = -1 and x = 1 are the vertical asymptotes of f.
Definition: If lim x->a^(+/-) f(x) = +/- Infinity, then we say x=a is a vertical asymptote. If lim x->+/- Infinity f(x) = a, then we say f(x) have a horizontal asymptote at a If l(x) is a linear function such that lim x->+/- Infinity f(x)-l(x) = 0, then we say l(x) is a slanted asymptote. As you might notice, there is no generic method of finding asymptotes. Rational functions are really nice, and the non-permissible values are likely vertical asymptotes. Horizontal asymptotes should be easiest to approach, simply take limit at +/- Infinity Vertical Asymptote just find non-permissible values, and take limits towards it to check Slanted, most likely is educated guesses. If you get f(x) = some infinite sum, there is no reason why we should be able to to find an asymptote of it with out simplify and comparison etc.
Undefined; large