Assume the rational function is in its simplest form (if not, simplify it). If the denominator is a quadratic or of a higher power then it can have more than one roots and each one of these roots will result in a vertical asymptote. So, the graph of a rational function will have as many vertical asymptotes as there are distinct roots in its denominator.
no
approaches but does not cross
An undefined graph typically occurs when there is a division by zero in a mathematical equation, resulting in an infinite or undefined value. In a graph, this would manifest as a vertical line or asymptote where the function approaches infinity or negative infinity. This can happen, for example, when plotting the graph of a rational function where the denominator equals zero at a certain point.
It is an asymptote.
asymptote
It can.
no
No. The fact that it is an asymptote implies that the value is never attained. The graph can me made to go as close as you like to the asymptote but it can ever ever take the asymptotic value.
Answer: no [but open to debate] ((x-1)(x-2)(x+2))/(x-3) (x^2-3x+2)/(x-2)(x+2) Asymptote missing, graph it, there is no Asymptote because the (x-2)(x+2) can be factored out. yes
Piece wise functions can do everything. Take two pieces of two rational functions, one have a horizontal asymptote as x goes to -infinity and the other have a slanted (oblique) one as x goes to +infinity. It is still a rational function.
approaches but does not cross
An undefined graph typically occurs when there is a division by zero in a mathematical equation, resulting in an infinite or undefined value. In a graph, this would manifest as a vertical line or asymptote where the function approaches infinity or negative infinity. This can happen, for example, when plotting the graph of a rational function where the denominator equals zero at a certain point.
It is an asymptote.
An asymptote.
No. If it cuts a graph it is not an asymptote.
The graph of an exponential function f(x) = bx approaches, but does not cross the x-axis. The x-axis is a horizontal asymptote.
The Equation of a Rational Function has the Form,... f(x) = g(x)/h(x) where h(x) is not equal to zero. We will use a given Rational Function as an Example to graph showing the Vertical and Horizontal Asymptotes, and also the Hole in the Graph of that Function, if they exist. Let the Rational Function be,... f(x) = (x-2)/(x² - 5x + 6). f(x) = (x-2)/[(x-2)(x-3)]. Now if the Denominator (x-2)(x-3) = 0, then the Rational function will be Undefined, that is, the case of Division by Zero (0). So, in the Rational Function f(x) = (x-2)/[(x-2)(x-3)], we see that at x=2 or x=3, the Denominator is equal to Zero (0). But at x=3, we notice that the Numerator is equal to ( 1 ), that is, f(3) = 1/0, hence a Vertical Asymptote at x = 3. But at x=2, we have f(2) = 0/0, 'meaningless'. There is a Hole in the Graph at x = 2.