No, it is not. In 1837, the French mathematician, Pierre Laurent Wantzel, proved that it was impossible to do so using only compass and straightedge.
No, it is not and in 1837 Pierre Wantzel proved this to be the case.
Doubling a cube and trisecting any angle
No. This is known to be impossible. For more information, including a proof, check the Wikipedia article on "doubling the cube".
The three problems were: * To construct a square with area equal to a given circle ("squaring the circle"). * Given a cube, to construct the edge length of another cube which would have double the volume of the given cube ("duplicating the cube") * Given an arbitrary angle, to construct an angle one third that of the given angle ("angle trisection"). These problems were to be solved using compass and unmarked straight-edge only. It is apparently not known who first proposed these problems. Two of them (squaring the circle and angle trisection) date to at least 100 years before Euclid. The problem of duplicating the cube also predates Euclid, though maybe not by 100 years. In the 19th century, all three problems were shown to be impossible with the restriction to compass and straight-edge. (Despite this, people persist in trying, but they have to be classified as cranks.) Even in ancient times, methods of solution were given, but they used more than just a compass and straight-edge.
false
No, it is not. In 1837, the French mathematician, Pierre Laurent Wantzel, proved that it was impossible to do so using only compass and straightedge.
No, it is not possible to construct a cube of twice teh volume of a given cube using only a straightedge and a compass.
No, it is not possible to construct a cube of twice teh volume of a given cube using only a straightedge and a compass.
Constructions that are impossible using only a compass and straightedge include Trisecting an angle Squaring a circle Doubling a cube
True (APEX) - Nini :-* GOOD LUCK .
doubling the cube
No, it is not and in 1837 Pierre Wantzel proved this to be the case.
No, it is not possible to construct a cube of twice teh volume of a given cube using only a straightedge and a compass.
Squaring the circle, duplicating the cube, and trisecting an angle were constructions that were never accomplished by the Greeks with only a straightedge and compass. These are known as the three classical geometric problems that cannot be solved using only those tools.
doubling a cube and trisecting any angle
Doubling a cube and trisecting any angle