sin(0)=0 and sin(very large number) is approximately equal to that same very large number.
The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.
[]=theta 1. sin[]=0.5sin[] Subtract 0.5sin[] from both sides.2. 0.5sin[]=0. Divide both sides by 0.5.3. Sin[] =0.[]=0 or pi (radians)
The fourth Across the quadrants sin theta and cos theta vary: sin theta: + + - - cos theta: + - - + So for sin theta < 0, it's the third or fourth quadrant And for cos theta > 0 , it's the first or fourth quadrant. So for sin theta < 0 and cos theta > 0 it's the fourth quadrant
(in a past paper it asks u to solve this for -180</=theta<180, so I have solved it) Tan theta =-1, so theta = -45. Use CAST diagram to find other values of theta for -180</=theta<180: Theta (in terms of tan) = -ve, other value is in either S or C. But because of boundaries value can only be in S. So other value= 180-45=135. Do the same for sin. Sin theta=2/5 so theta=23.6 CAST diagram, other value in S because theta (in terms of sin)=+ve. So other value=180-23.6=156.4.
Theta equals 0 or pi.
sin(0)=0 and sin(very large number) is approximately equal to that same very large number.
The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.
2 sin (Θ) + 1 = 0sin (Θ) = -1/2Θ = 210°Θ = 330°
2 sin(x) + 1 = 0 2 sin(x) = -1 sin(x) = -1/2 x = 210° and 330°
4
[]=theta 1. sin[]=0.5sin[] Subtract 0.5sin[] from both sides.2. 0.5sin[]=0. Divide both sides by 0.5.3. Sin[] =0.[]=0 or pi (radians)
cos2(theta) = 1 so cos(theta) = ±1 cos(theta) = -1 => theta = pi cos(theta) = 1 => theta = 0
The fourth Across the quadrants sin theta and cos theta vary: sin theta: + + - - cos theta: + - - + So for sin theta < 0, it's the third or fourth quadrant And for cos theta > 0 , it's the first or fourth quadrant. So for sin theta < 0 and cos theta > 0 it's the fourth quadrant
cos2(theta) = 1 cos2(theta) + sin2(theta) = 1 so sin2(theta) = 0 cos(2*theta) = cos2(theta) - sin2(theta) = 1 - 0 = 1
assuming that you mean what is theta if sin 4 theta = 0 then then theta=0, 0.25pi, 0.5pi, 0.75pi... if not then without additional information the best answer you can get is sin4theta=sin4theta
If sin θ = tan θ, that means cos θ is 1 (since tan θ = (sin θ)/(cos θ)) (Usually in and equation a/b=a, b doesn't have to be 1 when a is 0, but cos θ = 1 if and only if sin θ = 0) The angles that satisfy cos θ = 1 is 2n(pi) (or 360n in degrees) When n is an integer. But if sin θ = tan θ = θ, the only answer is θ = 0. Because sin 0 is 0 and cos 0 is 1 and tan 0 is 0 The only answer would be when θ = 0.