The strength of the linear relationship between the two variables in the regression equation is the correlation coefficient, r, and is always a value between -1 and 1, inclusive. The regression coefficient is the slope of the line of the regression equation.
A correlation coefficient is a value between -1 and 1 that shows how close of a good fit the regression line is. For example a regular line has a correlation coefficient of 1. A regression is a best fit and therefore has a correlation coefficient close to one. the closer to one the more accurate the line is to a non regression line.
Z Test
It is not. If it were, there would be no regression or correlation.
Correlation is a measure of the degree of agreement in the changes (variances) in two or more variables. In the case of two variables, if one of them increases by the same amount for a unit increase in the other, then the correlation coefficient is +1. If one of them decreases by the same amount for a unit increase in the other, then the correlation coefficient is -1. Lesser agreement results in an intermediate value. Regression involves estimating or quantifying this relationship. It is very important to remember that correlation and regression measure only the linear relationship between variables. A symmetrical relationshup, for example, y = x2 between values of x with equal magnitudes (-a < x < a), has a correlation coefficient of 0, and the regression line will be a horizontal line. Also, a relationship found using correlation or regression need not be causal.
The strength of the linear relationship between the two variables in the regression equation is the correlation coefficient, r, and is always a value between -1 and 1, inclusive. The regression coefficient is the slope of the line of the regression equation.
correlation we can do to find the strength of the variables. but regression helps to fit the best line
Yes.
A correlation coefficient is a value between -1 and 1 that shows how close of a good fit the regression line is. For example a regular line has a correlation coefficient of 1. A regression is a best fit and therefore has a correlation coefficient close to one. the closer to one the more accurate the line is to a non regression line.
correlation, or regression
"http://wiki.answers.com/Q/Use_of_correlation_and_regression_in_business"
Regression Analysis
Z Test
It is not. If it were, there would be no regression or correlation.
Correlation is a measure of the degree of agreement in the changes (variances) in two or more variables. In the case of two variables, if one of them increases by the same amount for a unit increase in the other, then the correlation coefficient is +1. If one of them decreases by the same amount for a unit increase in the other, then the correlation coefficient is -1. Lesser agreement results in an intermediate value. Regression involves estimating or quantifying this relationship. It is very important to remember that correlation and regression measure only the linear relationship between variables. A symmetrical relationshup, for example, y = x2 between values of x with equal magnitudes (-a < x < a), has a correlation coefficient of 0, and the regression line will be a horizontal line. Also, a relationship found using correlation or regression need not be causal.
8.7.4 Properties of Regression Coefficients:(a) Correlation coefficient is the geometric mean between the regression coefficients. (b) If one of the regression coefficients is greater than unity, the other must be less than unity.(c) Arithmetic mean of the regression coefficients is greater than the correlation coefficient r, providedr > 0.(d) Regression coefficients are independent of the changes of origin but not of scale.
the negative sign on correlation just means that the slope of the Least Squares Regression Line is negative.