False
Let the triangle be ABC and suppose the median AD is also an altitude.AD is a median, therefore BD = CDAD is an altitude, therefore angle ADB = angle ADC = 90 degreesThen, in triangles ABD and ACD,AD is common,angle ADB = angle ADCand BD = CDTherefore the two triangles are congruent (SAS).And therefore AB = AC, that is, the triangle is isosceles.
Label the triangle ABC. Draw the bisector of angle A to meet BC at D. Then in triangles ABD and ACD, angle ABD = angle ACD (equiangular triangle) angle BAD = angle CAD (AD is angle bisector) so angle ADB = angle ACD (third angle of triangles). Also AD is common. So, by ASA, triangle ABD is congruent to triangle ACD and therefore AB = AC. By drawing the bisector of angle B, it can be shown that AB = BC. Therefore, AB = BC = AC ie the triangle is equilateral.
False
<ADB
False; just because it is in the interior does not mean it is on the bisecting line.
bc = ad = 75 Tan adb = 160/75 = 2.1333 (4dp), so angle adb = 64.885°.
55 degrees
Let D represent the point on BC where the bisector of A intersects BC. Because AD bisects angle A, angle BAD is congruent to CAD. Because AD is perpendicular to BC, angle ADB is congruent to ADC (both are right angles). The line segment is congruent to itself. By angle-side-angle (ASA), we know that triangle ADB is congruent to triangle ADC. Therefore line segment AB is congruent to AC, so triangle ABC is isosceles.
Suppose you have triangle ABC with base BC, and angle B = angle C. Draw the altitude AD.Considers triangles ABD and ACDangle ABD = angle ACD (given)angle ADB = 90 deg = angle ACDtherefore angle BAD = angle CADAlso the side AD is common to the two triangles.Therefore triangle ABD is congruent to triangle ACD (ASA) and so AB = AC.That is, triangle ABC is isosceles.
ADB. Its means Air Dry Basis.
Let the triangle be ABC and suppose the median AD is also an altitude.AD is a median, therefore BD = CDAD is an altitude, therefore angle ADB = angle ADC = 90 degreesThen, in triangles ABD and ACD,AD is common,angle ADB = angle ADCand BD = CDTherefore the two triangles are congruent (SAS).And therefore AB = AC, that is, the triangle is isosceles.
The meaning of ADB is Average Daily Balance.
ADB=Air Dried Basis ARB=As Received Basis
In the case of SBI, ADB in relation to a branch refers to Agricultural Development Branch - such branches concentrate on development of agricultural lending in their areas.