Nonparametric tests are sometimes called distribution free statistics because they do not require that the data fit a normal distribution. Nonparametric tests require less restrictive assumptions about the data than parametric restrictions. We can perform the analysis of categorical and rank data using nonparametric tests.
If the distribution is parametric then yes.
Parametric statistical tests assume that your data are normally distributed (follow a classic bell-shaped curve). An example of a parametric statistical test is the Student's t-test.Non-parametric tests make no such assumption. An example of a non-parametric statistical test is the Sign Test.
1. A nonparametric statistic has no inference 2. A nonparametric statistic has no standard error 3. A nonparametric statistic is an element in a base population (universe of possibilities) where every possible event in the population is known and can be characterized * * * * * That is utter rubbish and a totally irresponsible answer. In parametric statistics, the variable of interest is distributed according to some distribution that is determined by a small number of parameters. In non-parametric statistics there is no underlying parametric distribution. With non-parametric data you can compare between two (or more) possible distributions (goodness-of-fit), test for correlation between variables. Some test, such as the Student's t, chi-square are applicable for parametric as well as non-parametric statistics. I have, therefore, no idea where the previous answerer got his/her information from!
A classic would be the Kolmogorov-Smirnov test.
Nonparametric tests are sometimes called distribution free statistics because they do not require that the data fit a normal distribution. Nonparametric tests require less restrictive assumptions about the data than parametric restrictions. We can perform the analysis of categorical and rank data using nonparametric tests.
If the distribution is parametric then yes.
Parametric statistical tests assume that your data are normally distributed (follow a classic bell-shaped curve). An example of a parametric statistical test is the Student's t-test.Non-parametric tests make no such assumption. An example of a non-parametric statistical test is the Sign Test.
Parametric tests draw conclusions based on the data that are drawn from populations that have certain distributions. Non-parametric tests draw fewer conclusions about the data set. The majority of elementary statistical methods are parametric because they generally have larger statistical outcomes. However, if the necessary conclusions cannot be drawn about a data set, non-parametric tests are then used.
A paired samples t-test is an example of parametric (not nonparametric) tests.
1. A nonparametric statistic has no inference 2. A nonparametric statistic has no standard error 3. A nonparametric statistic is an element in a base population (universe of possibilities) where every possible event in the population is known and can be characterized * * * * * That is utter rubbish and a totally irresponsible answer. In parametric statistics, the variable of interest is distributed according to some distribution that is determined by a small number of parameters. In non-parametric statistics there is no underlying parametric distribution. With non-parametric data you can compare between two (or more) possible distributions (goodness-of-fit), test for correlation between variables. Some test, such as the Student's t, chi-square are applicable for parametric as well as non-parametric statistics. I have, therefore, no idea where the previous answerer got his/her information from!
You might be referring to parametric vs nonparametric methods.
A classic would be the Kolmogorov-Smirnov test.
definition of nonparametric equestion?and give exampls?
David Sheskin has written: 'Handbook of parametric and nonparametric statistical procedures' -- subject(s): Mathematical statistics, Handbooks, manuals 'Handbook of parametric and nonparametric statistical procedures' -- subject(s): Mathematical statistics, Handbooks, manuals, etc, Handbooks, manuals
There are several reasons, including the following, in no particular order:I suspect that many or most people learn the parametric alternatives first, or learn mainly the parameteric alternatives.When the correct conditions hold, the parametric alternatives provide the best power.In some situations, such as the more complicated ANOVA and related methods, there are no nonparametric alternatives.Often data that do not appear to satisfy the requirements for parametric procedures can be transformed so that they do, more or less.Parametric procedures have been shown to be robust in the face of departures from the assumptions on which they were based, in many cases.
Non-Parametric statistics are statistics where it is not assumed that the population fits any parametrized distributions. Non-Parametric statistics are typically applied to populations that take on a ranked order (such as movie reviews receiving one to four stars). The branch of http://www.answers.com/topic/statistics known as non-parametric statistics is concerned with non-parametric http://www.answers.com/topic/statistical-model and non-parametric http://www.answers.com/topic/statistical-hypothesis-testing. Non-parametric models differ from http://www.answers.com/topic/parametric-statistics-1 models in that the model structure is not specified a priori but is instead determined from data. The term nonparametric is not meant to imply that such models completely lack parameters but that the number and nature of the parameters are flexible and not fixed in advance. Nonparametric models are therefore also called distribution free or parameter-free. * A http://www.answers.com/topic/histogram is a simple nonparametric estimate of a probability distribution * http://www.answers.com/topic/kernel-density-estimation provides better estimates of the density than histograms. * http://www.answers.com/topic/nonparametric-regression and http://www.answers.com/topic/semiparametric-regression methods have been developed based on http://www.answers.com/topic/kernel-statistics, http://www.answers.com/topic/spline-mathematics, and http://www.answers.com/topic/wavelet. Non-parametric (or distribution-free) inferential statistical methodsare mathematical procedures for statistical hypothesis testing which, unlike http://www.answers.com/topic/parametric-statistics-1, make no assumptions about the http://www.answers.com/topic/frequency-distribution of the variables being assessed. The most frequently used tests include