If the angle decreases, the magnitude of the resultant vector increases.
If vector a and b are truly identical, their resultant angle will be the same. Their resultant velocity will not be the same, however. Assuming you mean the magnitudes are the same, the two vectors will be at an angle of 120o
vector equal in magnitude and opposite direction
7
The Resultant Vector minus the other vector
If the angle decreases, the magnitude of the resultant vector increases.
If vector a and b are truly identical, their resultant angle will be the same. Their resultant velocity will not be the same, however. Assuming you mean the magnitudes are the same, the two vectors will be at an angle of 120o
vector equal in magnitude and opposite direction
7
The Resultant Vector minus the other vector
A resultant on a vector diagram is drawn by connecting the tail of the first vector to the head of the second vector. Then, the resultant vector is drawn from the tail of the first vector to the head of the second vector. The resultant vector represents the sum or difference of the two original vectors.
Graphical Vector AdditionDraw your first vector. Then draw the tail (start) of your second vector at the tip (end) of your first vector. Then draw the tail of your third vector at the tip of you third vector (if it exists,) and so on. To find the resultant, draw a vector from the tail of the first vector to the tip of the last vector. The angle of the resultant will be between the resultant's tail and the first vector's tail. To find these values, it is recommended that you use a scale (e.g. 1cm:1m) and a protractor so that your values are accurate.Or, to do it mathematically (with 2 vectors):You have vector a with angle Ao, and vector b with angle Bo.To get vector c (resultant,) break the vectors up into their x and y components, then add the x and y components to find the x and y of the resultant. To find the magnitude of vector c, use Pythagoras's theorem, a2 + b2 = c2. To find the angle of c, use inverse tangent, tan-1(y/x)Example:Remember that sin = y and cos = x. Thus, to find the x component of a vector, use cos, and to find the y component of a vector, use sin.c = square root( (acosA + bcosB)2 + (asinA + bsinB)2 )angle of c = tan-1( (asinA + bsinB)/(bcosA + bcosB) )
The resultant vector describes the complete vector, magnitude and direction; while the component vector describes a single component of a vector, like the x-component. If the resultant vector has only one component, the resultant and the component are the same and there is no difference.t
the difference between resultant vector and resolution of vector is that the addition of two or more vectors can be represented by a single vector which is termed as a resultant vector. And the decomposition of a vector into its components is called resolution of vectors.
The resultant of two forces is affected by the angle between the forces through vector addition. When the forces are pointing in the same direction (angle is 0 degrees), the resultant will be the sum of the two forces. As the angle between the forces increases, the magnitude of the resultant decreases until at 90 degrees, the forces are perpendicular and the resultant is the square root of the sum of the squares of the two forces.
by method of finding resultant
A resutant vector