d/dx(cos x)
= -sinx
Chat with our AI personalities
If you actually mean "... with respect to x", and that y is equal to this function of x, then the answer is:y = x sin(x)∴ dy/dx = sin(x) + x cos(x)
The deriviative of sin2 x + cos2 x is 2 cos x - 2 sin x
If this is a homework assignment, please consider trying to answer it yourself first, otherwise the value of the reinforcement of the lesson offered by the assignment will be lost on you.The deriviative d/dx cos2(x) can be evaluated using the product rule.Recall that d/dx f(x)g(x) = g(x) d/dx f(x) + f(x) d/dx g(x)In this case, both f(x) and g(x) are cos(x), and cos2x = cos(x)cos(x), so...d/dx cos(x)cos(x) = -cos(x)sin(x) - cos(x)sin(x) = -2sin(x)cos(x)
(cos(pi x) + sin(pi y) )^8 = 44 differentiate both sides with respect to x 8 ( cos(pi x) + sin (pi y ) )^7 d/dx ( cos(pi x) + sin (pi y) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (-sin (pi x) pi + cos (pi y) pi dy/dx ) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (pi cos(pi y) dy/dx - pi sin (pi x) ) = 0 cos(pi y) dy/dx - pi sin(pi x) = 0 cos(pi y) dy/dx = sin(pi x) dy/dx = sin (pi x) / cos(pi y)
cos(x)-cos(x)sin2(x)=[cos(x)][1-sin2(x)]cos(x)-cos(x)sin2(x)=[cos(x)][cos2(x)]cos(x)-cos(x)sin2(x)=cos3(x)