d/dx(sinx-cosx)=cosx--sinx=cosx+sinx
d/dx(-cosx)=--sinx=sinx
derivative (7cosx) = -ln(7) 7cosx sinx dx
Using the Chain Rule :derivative of (sinx)2 = 2(sinx)1 * (derivative of sinx)d/dx (Sinx)2 = 2(sinx)1 * [d/dx (Sinx)]d/dx (Sinx)2 = 2(sinx) * (cosx)d/dx (Sinx)2 = 2 (sinx) * (cosx)d/dx (Sinx)2 = 2 sin(x) * cos(x)
(cosx)^2-(sinx)^2
-sinx
Trig functions have their own special derivatives that you will have to memorize. For instance: the derivative of sinx is cosx. The derivative of cosx is -sinx The derivative of tanx is sec2x The derivative of cscx is -cscxcotx The derivative of secx is secxtanx The derivative of cotx is -csc2x
d/dx(sinx-cosx)=cosx--sinx=cosx+sinx
-cos(x)
2
d/dx(-cosx)=--sinx=sinx
derivative (7cosx) = -ln(7) 7cosx sinx dx
The derivative of sin(x) is cos(x).
Using the Chain Rule :derivative of (sinx)2 = 2(sinx)1 * (derivative of sinx)d/dx (Sinx)2 = 2(sinx)1 * [d/dx (Sinx)]d/dx (Sinx)2 = 2(sinx) * (cosx)d/dx (Sinx)2 = 2 (sinx) * (cosx)d/dx (Sinx)2 = 2 sin(x) * cos(x)
(cosx)^2-(sinx)^2
y=1/sinxy'=(sinx*d/dx(1)-1*d/dx(sinx))/(sin2x)y'=(sinx*0-1(cosx))/(sin2x)y'=(-cosx)/(sin2x)y'=-(cosx/sinx)*(1/sinx)y'=-cotx*cscx
f(x)=sinx+cosx take the derivative f'(x)=cosx-sinx critical number when x=pi/4