False
Given a proposition X, a regular proof known facts and logical arguments to show that X must be true. For an indirect proof, you assume that the negation of X is true. You then use known facts and logical arguments to show that this leads to a contradiction. The conclusion then is that the assumption about ~X being true is false and that is equivalent to showing that X is true.
True. An indirect proof, also known as proof by contradiction, involves assuming that the statement to be proven is false. From this assumption, logical deductions are made, ultimately leading to a contradiction or an impossible situation, which implies that the original statement must be true. This method is often used in mathematical reasoning to establish the validity of a statement.
contradiction
proof by contradiction
It is a type of indirect proof: more specifically, a proof by contradiction.
False
false
TrueIt is true that the body of an indirect proof you must show that the assumption leads to a contradiction. In math a proof is a deductive argument for a mathematical statement.
TrueIt is true that the body of an indirect proof you must show that the assumption leads to a contradiction. In math a proof is a deductive argument for a mathematical statement.
true
true
To demonstrate the validity of a statement using proof by absurdity or contradiction, we assume the opposite of the statement is true and then show that this assumption leads to a logical contradiction or absurdity. This contradiction proves that the original statement must be true.
True
Identify the conjecture to be proven.Assume the opposite of the conclusion is true.Use direct reasoning to show that the assumption leads to a contradiction.Conclude that the assumption is false and hence that the original conjecture must be true.
This is a "proof by contradiction", where the evidence would fail to support the reverse assumption, giving credence to the original hypothesis.
The logic indirect proof solver can be used to solve complex problems by working backwards from the desired conclusion to find a contradiction. By assuming the opposite of what you want to prove and showing that it leads to a contradiction, you can demonstrate that your original assumption must be true. This method allows you to prove statements that may be difficult to directly prove.
Given a proposition X, a regular proof known facts and logical arguments to show that X must be true. For an indirect proof, you assume that the negation of X is true. You then use known facts and logical arguments to show that this leads to a contradiction. The conclusion then is that the assumption about ~X being true is false and that is equivalent to showing that X is true.