Yes.
Chat with our AI personalities
If tiu have a set S, its power set is the set of all subsets of S (including the null set and itself).
Equivalent sets are sets that have the same cardinality. For finite sets it means that they have the same number of distinct elements.For infinite sets, though, things get a bit complicated. Then it is possible for a set to be equivalent to a proper subset of itself: for example, the set of all integers is equivalent to the set of all even integers. What is required is a one-to-one mapping, f(x) = 2x, from the first set to the second.
ALL the elements in set A combined with all the elements in set B.Example:When A={1,2,3,4} and B={2,3,6} The union of Sets A and B would be: {1,2,3,4,6} , because both sets contain those numbers.
You can invent an infinite number of sets that don't contain the number zero. For a start, a common set that doesn't contain the zero is the set of natural, or counting, numbers (1, 2, 3...).You can invent an infinite number of sets that don't contain the number zero. For a start, a common set that doesn't contain the zero is the set of natural, or counting, numbers (1, 2, 3...).You can invent an infinite number of sets that don't contain the number zero. For a start, a common set that doesn't contain the zero is the set of natural, or counting, numbers (1, 2, 3...).You can invent an infinite number of sets that don't contain the number zero. For a start, a common set that doesn't contain the zero is the set of natural, or counting, numbers (1, 2, 3...).
The statement 4 is one eighth of a set is telling us that there is a set that contains eight different items (sets can contain other things than numbers, for example, they can contain other sets) and one of those items is the number 4.