There is no such thing as a "set of all sets". To be more precise, the idea of a "set of all sets" leads to contradictions; therefore this term is avoided in set theory. Check the Wikipedia article on "Universal set" for more details.
Chat with our AI personalities
Two sets are equal if they both contain the same elements.
Yes all sets have subsets.Even the null set.
The set {1, 3} is a proper subset of {1, 2, 3}.The set {a, b, c, d, e} is a proper subset of the set that contains all the letters in the alphabet.All subsets of a given set are proper subsets, except for the set itself. (Every set is a subset of itself, but not a proper subset.) The empty set is a proper subset of any non-empty set.This sounds like a school question. To answer it, first make up any set you like. Then, as examples of proper subsets, make sets that contain some, but not all, of the members of your original set.
You can, of course, make up infinitely many sets that contain this number. Some important sets that include it are:The set of integers.The set of rational numbers.The set of real numbers.The set of complex numbers.
we can consider all infinite sets as equivlent sets if we go by the the cantor set theory.for eg. on a number line if we consider the nos. between 0 and 1 as a set then they are infinite. similarly the nos. between 0 and 5 can also be considered infinite and if considered as a set then they can be considered as equivalent