It's 60 degrees.
Chat with our AI personalities
draw a line perpendicular to the radius which was set at a specific number of degrees from zeroin the circle
What do you mean by "arc length of a circle"? If you mean the arc length between two adjacent vertices of the inscribed polygon, then: If the polygon is irregular then the arc length between adjacent vertices of the polygon will vary and it is impossible to calculate and the angle between the radii must be measured from the diagram using a protractor if the angle is not marked. The angle is a fraction of a whole turn (which is 360° or 2π radians) which can be multiplied by the circumference of the circle to find the arc length between the radii: arc_length = 2πradius × angle/angle_of_full_turn → arc_length = 2πradius × angle_in_degrees/360° or arc_length = 2πradius × angle_in_radians/2π = radius × angle_in_radians If there is a regular polygon inscribed in a circle, then there will be a constant angle between the radii of the circle between the adjacent vertices of the polygon and each arc between adjacent vertices will be the same length; assuming you know the radius of the circle, the arc length is thus one number_of_sides_th of the circumference of the circle, namely: arc_length_between_adjacent_vertices_of_inscribed_regular_polygon = 2πradius ÷ number_of_sides
You Look at the angle the problem gives you
wee
There is no specific limitation on any one angle of an inscribed quadrilateral.