answersLogoWhite

0

sin(x)-cos(x) = (1)sin(x)+(-1)cos(x)

so the range is sqrt((1)^2+(-1)^2)=1

and the domain is R

<><><><><>

The domain of sin x - cos x is [-infinity, +infinity].

The range of sin x - cos x is [-1.414, +1.414].

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

In and 8710ABC if sin A and tan A then what is cos A?

In a right triangle, if we know (\sin A) and (\tan A), we can find (\cos A) using the identity (\tan A = \frac{\sin A}{\cos A}). Rearranging this gives us (\cos A = \frac{\sin A}{\tan A}). Therefore, if you have specific values for (\sin A) and (\tan A), you can substitute them into this equation to find (\cos A).


How do I find the product z1z2 if z1 5(cos20 plus isin20) and z2 8(cos15 plus isin15)?

Like normal expansion of brackets, along with: cos(A + B) = cos A cos B - sin A sin B sin(A + B) = sin A cos B + cos A sin B 5(cos 20 + i sin 20) &times; 8(cos 15 + i sin 15) = 5&times;8 &times; (cos 20 + i sin 20)(cos 15 + i sin 15) = 40(cos 20 cos 15 + i sin 15 cos 20 + i cos 15 sin 20 + i&sup2; sin 20 sin 15) = 40(cos 20 cos 15 - sin 20 cos 15 + i(sin 15 cos 20 + cos 15 sin 20)) = 40(cos(20 +15) + i sin(15 + 20)) = 40(cos 35 + i sin 35)


How do you prove this trigonometric relationship sin3A equals 3sinA cos 2 A - sin 3 A?

sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)


How do you simplify cos times cot plus sin?

cos*cot + sin = cos*cos/sin + sin = cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec


Cos 5t cos 3t -square root 3 2 - sin 5t cos 3t?

The answer to the math question Cos 5t cos 3t -square root 3 2 - sin 5t cos 3t equals 0. In order to find this answer you will have to find out what each letter is.

Related Questions

What is the domain and range of the relation y equals tanx?

tan(x) is the same as sin(x) / cos(x). Domain is all the real numbers, except those numbers where the cos(x) = 0. That is, the domain does not include pi/2, 3pi/2, 5pi/2, etc. The range includes all real numbers.tan(x) is the same as sin(x) / cos(x). Domain is all the real numbers, except those numbers where the cos(x) = 0. That is, the domain does not include pi/2, 3pi/2, 5pi/2, etc. The range includes all real numbers.tan(x) is the same as sin(x) / cos(x). Domain is all the real numbers, except those numbers where the cos(x) = 0. That is, the domain does not include pi/2, 3pi/2, 5pi/2, etc. The range includes all real numbers.tan(x) is the same as sin(x) / cos(x). Domain is all the real numbers, except those numbers where the cos(x) = 0. That is, the domain does not include pi/2, 3pi/2, 5pi/2, etc. The range includes all real numbers.


Can cosine x equal -3?

No.-1


In and 8710ABC if sin A and tan A then what is cos A?

In a right triangle, if we know (\sin A) and (\tan A), we can find (\cos A) using the identity (\tan A = \frac{\sin A}{\cos A}). Rearranging this gives us (\cos A = \frac{\sin A}{\tan A}). Therefore, if you have specific values for (\sin A) and (\tan A), you can substitute them into this equation to find (\cos A).


How do I find the product z1z2 if z1 5(cos20 plus isin20) and z2 8(cos15 plus isin15)?

Like normal expansion of brackets, along with: cos(A + B) = cos A cos B - sin A sin B sin(A + B) = sin A cos B + cos A sin B 5(cos 20 + i sin 20) &times; 8(cos 15 + i sin 15) = 5&times;8 &times; (cos 20 + i sin 20)(cos 15 + i sin 15) = 40(cos 20 cos 15 + i sin 15 cos 20 + i cos 15 sin 20 + i&sup2; sin 20 sin 15) = 40(cos 20 cos 15 - sin 20 cos 15 + i(sin 15 cos 20 + cos 15 sin 20)) = 40(cos(20 +15) + i sin(15 + 20)) = 40(cos 35 + i sin 35)


What is the range of y equals -sin x?

The range of -sin x depends on the domain of x. If the domain of x is unrestricted then the range of y is [-1, 1].


Verify that sin minus cos plus 1 divided by sin plus cos subtract 1 equals sin plus 1 divided by cos?

[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,


How do you prove this trigonometric relationship sin3A equals 3sinA cos 2 A - sin 3 A?

sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)


How do you show that 2 sin squared x minus 1 divided by sin x minus cos x equals sin x plus cos x?

(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x


How do you simplify cos times cot plus sin?

cos*cot + sin = cos*cos/sin + sin = cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec


Factor sin cubed plus cos cubed?

sin cubed + cos cubed (sin + cos)( sin squared - sin.cos + cos squared) (sin + cos)(1 + sin.cos)


Find the values of θ in the range 0 to 2π for cos θ plus cos 3θ equals sin θ plus sin 3θ?

The angle can be 0, pi/2, pi, 3*pi/2 or 2*pi radians.


How would you prove left cosA plus sinA right times left cos2A plus sin2A right equals cosA plus sin3A?

You need to make use of the formulae for sin(A+B) and cos(A+B), and that cos is an even function: sin(A+B) = cos A sin B + sin A cos B cos(A+B) = cos A cos B - sin A sin B cos even fn &rarr; cos(-x) = cos(x) To prove: (cos A + sin A)(cos 2A + sin 2A) = cos A + sin 3A The steps are to work with the left hand side, expand the brackets, collect [useful] terms together, apply A+B formula above (backwards) and apply even nature of cos function: (cos A + sin A)(cos 2A + sin 2A) = cos A cos 2A + cos A sin 2A + sin A cos 2A + sin A sin 2A = (cos A cos 2A + sin A sin 2A) + (cos A sin 2A + sin A cos 2A) = cos(A - 2A) + sin(A + 2A) = cos(-A) + sin 3A = cos A + sin 3A which is the right hand side as required.