answersLogoWhite

0


Best Answer

cos*cot + sin = cos*cos/sin + sin

= cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you simplify cos times cot plus sin?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How do you simplify csc theta -cot theta cos theta?

For a start, try converting everything to sines and cosines.


How do you simplify csc theta minus cot x theta times cos theta plus 1?

There can be no significant simplicfication if some of the angles are theta and others are x, so assume that all angles are x. [csc(x) - cot(x)]*[cos(x) + 1] =[1/sin(x) - cos(x)/sin(x)]*[cos(x) + 1] =1/sin(x)*[1 - cos(x)]*[cos(x) + 1] =1/sin(x)*[1 - cos2(x)] =1/sin(x)*[sin2(x)] = sin(x)


How do you prove that (1 plus cotx)2-2cotx 1(1-cos)(1 plus cos)?

Manipulate normally, noting:cot x = cos x / sin xcos² x + sin² x = 1 → sin²x = 1 - cos² xa² - b² = (a + b)(a - b)1 = 1²ab = baa/(bc) = a/b/c(1 + cot x)² - 2 cot x = 1² + 2 cot x + cot² x - 2 cot x= 1 + cot² x= 1 + (cos x / sin x)²= 1 + cos² x / sin² x= 1 + cos² x / (1 - cos² x)= ((1 - cos² x) + cos² x)/(1 - cos² x)= 1/(1² - cos² x)= 1/((1 + cos x)(1 - cos x))= 1/(1 - cos x)/(1 + cos x)QED.


How do you simplify x x x?

sec(x)*cot(x) = (1/cos(x))*(cos(x)/sin(x)) = (1/sin(x)) = csc(x)


How do you simplify tan cot equals 1?

It just simplifies down to 1=1. You have to use your trig identities... tan=sin/cos cot=cos/sin thus tan x cot= (sin/cos) (cos/sin) since sin is in the numerator for tan, when it is multiplied by cot (which has sin in the denominator) both of the signs cancel and both now have a value of 1. The same happens with cos. so you get 1 x 1=1 so there is your answer. just learn your trig identities and you will understand

Related questions

How do you simplify csc theta cot theta cos theta?

cosec(q)*cot(q)*cos(q) = 1/sin(q)*cot(q)*cos(q) = cot2(q)


How do you simplify sec x cot x?

sec(x)*cot(x) = (1/cos(x))*(cos(x)/sin(x)) = (1/sin(x)) = csc(x)


How do you simplify cot of theta times sin of theta?

By converting everything to sines and cosines. Since tan x = sin x / cos x, in the cotangent, which is the reciprocal of the tangent: cot x = cos x / sin x. You can replace any other variable (like thetha) for the angle.


How do you simplify csc theta -cot theta cos theta?

For a start, try converting everything to sines and cosines.


How do you simplify csc theta minus cot x theta times cos theta plus 1?

There can be no significant simplicfication if some of the angles are theta and others are x, so assume that all angles are x. [csc(x) - cot(x)]*[cos(x) + 1] =[1/sin(x) - cos(x)/sin(x)]*[cos(x) + 1] =1/sin(x)*[1 - cos(x)]*[cos(x) + 1] =1/sin(x)*[1 - cos2(x)] =1/sin(x)*[sin2(x)] = sin(x)


How do you prove that (1 plus cotx)2-2cotx 1(1-cos)(1 plus cos)?

Manipulate normally, noting:cot x = cos x / sin xcos² x + sin² x = 1 → sin²x = 1 - cos² xa² - b² = (a + b)(a - b)1 = 1²ab = baa/(bc) = a/b/c(1 + cot x)² - 2 cot x = 1² + 2 cot x + cot² x - 2 cot x= 1 + cot² x= 1 + (cos x / sin x)²= 1 + cos² x / sin² x= 1 + cos² x / (1 - cos² x)= ((1 - cos² x) + cos² x)/(1 - cos² x)= 1/(1² - cos² x)= 1/((1 + cos x)(1 - cos x))= 1/(1 - cos x)/(1 + cos x)QED.


Simplify sinx cotx cosx?

== cot(x)== 1/tan(x) = cos(x)/sin(x) Now substitute cos(x)/sin(x) into the expression, in place of cot(x) So now: sin(x) cot(x) cos(x) = sin(x) cos(x) (cos(x)/sin(x) ) sin(x) cos(x) cos(x)/sin(x) The two sin(x) cancel, leaving you with cos(x) cos(x) Which is the same as cos2(x) So: sin(x) cot(x) cos(x) = cos2(x) ===


How do you simplify x x x?

sec(x)*cot(x) = (1/cos(x))*(cos(x)/sin(x)) = (1/sin(x)) = csc(x)


How do you simplify csc theta cot theta?

There are 6 basic trig functions.sin(x) = 1/csc(x)cos(x) = 1/sec(x)tan(x) = sin(x)/cos(x) or 1/cot(x)csc(x) = 1/sin(x)sec(x) = 1/cos(x)cot(x) = cos(x)/sin(x) or 1/tan(x)---- In your problem csc(x)*cot(x) we can simplify csc(x).csc(x) = 1/sin(x)Similarly, cot(x) = cos(x)/sin(x).csc(x)*cot(x) = (1/sin[x])*(cos[x]/sin[x])= cos(x)/sin2(x) = cos(x) * 1/sin2(x)Either of the above answers should work.In general, try converting your trig functions into sine and cosine to make things simpler.


How do you simplify tan cot equals 1?

It just simplifies down to 1=1. You have to use your trig identities... tan=sin/cos cot=cos/sin thus tan x cot= (sin/cos) (cos/sin) since sin is in the numerator for tan, when it is multiplied by cot (which has sin in the denominator) both of the signs cancel and both now have a value of 1. The same happens with cos. so you get 1 x 1=1 so there is your answer. just learn your trig identities and you will understand


How do you simplify sec x cot x cos x?

y = sec(x)*cot(x)*cos(x)To solve this trigonometric equation, you need to know these identities:sec(x) = 1/(cos(x))cot(x) = 1/(tan(x)) = (cos(x))/(sin(x))Now substitute these identities into the original equation:y = (1/cos(x))*((cos(x))/(sin(x)))*cos(x)Now cancel out the terms that are similar in the numerator and denominator to leave you with:y = (1/(sin(x)))*cos(x)y = (cos(x))/(sin(x))From the aforementioned known identity, the final simplified trigonometric equation becomes:y = cot(x)


Cot 70 plus 4cos70 equals?

cot 70 + 4 cos 70 = cos 70 / sin 70 + 4 cos 70 = cos 70 (1/sin 70 + 4) = cos 70 (csc 70 + 4) Numerical answer varies, depending on whether 70 is in degrees, radians, or grads.