answersLogoWhite

0

What else can I help you with?

Related Questions

What is An arrangement of n objects in a specific order?

An arrangement of n objects in a specific order is called a permutation. Permutations refer to all possible ways in which a set of objects can be ordered or arranged.


How do you find permutation?

If there are n objects and you have to choose r objects then the number of permutations is (n!)/((n-r)!). For circular permutations if you have n objects then the number of circular permutations is (n-1)!


The number of permutations of n objects taken all together is?

The number of permutations of n objects taken all together is n!.


What are different counting techniques?

What are the different counting techniques


How many different permutations are there of 4 objects taken 4 at a time?

The number of different permutations of 4 objects taken 4 at a time is calculated using the formula ( n! ), where ( n ) is the number of objects. For 4 objects, this is ( 4! = 4 \times 3 \times 2 \times 1 = 24 ). Therefore, there are 24 different permutations.


How many ways can 9 books be arranged on a shelf so that 5 of the books are always together?

You can simplify the problem by considering it as two different problems. The first involves consider the five-book chunk as a single book, and calculating the permutations there. The second involves the permutations of the books within the five-book block. Multiplying these together gives you the total permutations. Permutations of five objects is 5!, five gives 5!, so the total permutations are: 5!5! = 5*5*4*4*3*3*2*2 = 263252 = 14,400 permutations


How do you do permutations with repeating symbols?

Suppose you have n objects and within those, there arem1 objects of kind 1m2 objects of kind 2and so on.Then the number of permutations of the n objects is n!/[m1!* m2!...]For example, permutations of the word "banana"n = 6there are 3 "a"s so m1 = 3there are 2 "n"s so m2 = 2therefore, the number of permutations = 6!/(3!*2!) = 720/(3*2) = 120.


How can you find the number of permutations of a set of objects?

If there are n different objects, the number of permutations is factorial n which is also written as n! and is equal to 1*2*3*...*(n-1)*n.


What is the formula for finding permutations?

The number of permutations of r objects selected from n different objects is nPr = n!/(n-r)! where n! denotes 1*2*3*,,,*n and also, 0! = 1


Does the number of permutations always exceed the number of combinations?

No. The number of permutations or combinations of 0 objects out of n is always 1. The number of permutations or combinations of 1 object out of n is always n. Otherwise, yes.


What is the number of distinguishable permutations?

The formula for finding the number of distinguishable permutations is: N! -------------------- (n1!)(n2!)...(nk!) where N is the amount of objects, k of which are unique.


How many permutations of the numbers 10 through 14 are there?

The number of permutations of a set of distinct objects is calculated using the factorial of the number of objects. For the numbers 10 through 14, there are 5 distinct numbers (10, 11, 12, 13, and 14). Therefore, the number of permutations is 5! (5 factorial), which equals 5 × 4 × 3 × 2 × 1 = 120.