answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach

Add your answer:

Earn +20 pts
Q: How are instructions stored in binary?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Numbers stored and transmitted inside a computer in binary or ascii?

Binary.


How integers are stored as binary digits in computer?

It is 0 and 1.0=OFF AND 1=ON.


What is the purpose of binary codes?

A Binary code is a way of representing text or computer processor instructions by the use of the binary number system's two-binary digits 0 and 1.So the purpose of binary code is to issue human readable code, changed to machine code (binary) that the computer understands and can execute the instructions.


What is the Largest real number that can be stored in binary using 16 bits?

1111 1111 1111 1111 = 2^16 = 65536


How is scientific notation related to the floating point representation used by computers?

Floating point numbers are stored in scientific notation using base 2 not base 10.There are a limited number of bits so they are stored to a certain number of significant binary figures.There are various number of bytes (bits) used to store the numbers - the bits being split between the mantissa (the number) and the exponent (the power of 10 (being in the base of the storage - in binary, 10 equals 2 in decimal) by which the mantissa is multiplied to get the binary/decimal point back to where it should be), examples:Single precision (IEEE) uses 4 bytes: 8 bits for the exponent (encoding ±), 1 bit for the sign of the number and 23 bits for the number itself;Double precision (IEEE) uses 8 bytes: 11 bits for the exponent, 1 bit for the sign, 52 bits for the number;The Commodore PET used 5 bytes: 8 bits for the exponent, 1 bit for the sign and 31 bits for the number;The Sinclair QL used 6 bytes: 12 bits for the exponent (stored in 2 bytes, 16 bits, 4 bits of which were unused), 1 bit for the sign and 31 bits for the number.The numbers are stored normalised:In decimal numbers the digit before the decimal point is non-zero, ie one of {1, 2, ..., 9}.In binary numbers, the only non-zero digit is 1, so *every* floating point number in binary (except 0) has a 1 before the binary point; thus the initial 1 (before the binary point) is not stored (it is implicit).The exponent is stored by adding an offset of 2^(bits of exponent - 1), eg with 8 bit exponents it is stored by adding 2^7 = 1000 0000Zero is stored by having an exponent of zero (and mantissa of zero).Example 10 (decimal):10 (decimal) = 1010 in binary → 1.010 × 10^11 (all digits binary) which is stored in single precision as:sign = 0exponent = 1000 0000 + 0000 0011 = 1000 00011mantissa = 010 0000 0000 0000 0000 0000 (the 1 before the binary point is explicit).Example -0.75 (decimal):-0.75 decimal = -0.11 in binary (0.75 = ½ + ¼) → 1.1 × 10^-1 (all digits binary) → single precision:sign = 1exponent = 1000 0000 + (-0000 0001) = 0111 1111mantissa = 100 0000 0000 0000 0000 0000Note 0.1 in decimal is a recurring binary fraction 0.1 (decimal) = 0.0001100110011... in binary which is one reason floating point numbers have rounding issues when dealing with decimal fractions.