8
if it touches at three points it is a straight line. Since it is also an asymptote, it will be a straight horizontal line (zero slope)
Yes and they will be of equal value
Set 'x' equal to zero, and solve the remaining equation for 'y'.
If the discriminant of the quadratic equation is zero then it will have 2 equal roots. If the discriminant of the quadratic equation is greater than zero then it will have 2 different roots. If the discriminant of the quadratic equation is less than zero then it will have no roots.
An oblique asymptote is another way of saying "slant asymptote."When the degree of the numerator is one greater than the denominator, an equation has a slant asymptote. You divide the numerator by the denominator, and get a value. Sometimes, the division pops out a remainder, but ignore that, and take the answer minus the remainder. Make your "adapted answer" equal to yand that is your asymptote equation. To graph the equation, plug values.
Yes most of them do equal zero.
Asymptote's occur when your equation has a denominator of zero Holes may occur when your equation has both a numerator and denominator of zero So... The equation for the denominator equals zero is: x2-x-2 = 0 The equation for both the numerator and denominator equals zero is x - 2 = x2-x-2 = 0 For interests sake... lets solve it. ---- x2-x-2 = 0 (x+1)(x-2) = 0 x = -1, 2 x - 2 = x2-x-2 = 0 x - 2 = 0 x = 2 A vertical asymptote occurs at x = -1 A vertical asymptote or hole may appear at x = 2
8
Yes, the asymptote is x = 0. In order for logarithmic equation to have an asymptote, the value inside log must be 0. Then, 5x = 0 → x = 0.
It can tell you three things about the quadratic equation:- 1. That the equation has 2 equal roots when the discriminant is equal to zero. 2. That the equation has 2 distinctive roots when the discriminant is greater than zero. £. That the equation has no real roots when the discriminant is less than zero.
Every function has a vertical asymptote at every values that don't belong to the domain of the function. After you find those values you have to study the value of the limit in that point and if the result is infinite, then you have an vertical asymptote in that value
Yes. Take the functions f(x) = log(x) or g(x) = ln(x) In both cases, there is a vertical asymptote where x = 0. Because a number cannot be taken to any power so that it equals zero, and can only come closer and closer to zero without actually reaching it, there is an asymptote where it would equal zero. Note that transformations (especially shifting the function left and right) can change the properties of this asymptote.
It has 2 equal solutions
Not sure what you mean by "zero element". If an expression is equal to zero, and you can factor it, then at least one of the factors must be zero; this is often useful to solve an equation.
if it touches at three points it is a straight line. Since it is also an asymptote, it will be a straight horizontal line (zero slope)
when the equation is equal to zero. . .:)