If your numbers start at 000000 and go to 999999, where order is important and repetition is allowed (such as in a combination lock) then the answer is 1 million or 106. You take the number of digits available for each position (10) and raise to the power of the total number of digits (6).
Highest 2-digit number = 99 Highest 1-digit number = 9 Highest possible sum from 2, 2-digit numbers = 198 Highest possible sum from 2, 1-digit numbers = 18
every number from 0000 to 9999
Technically, that is not possible. A digit is another word for a number and it would be impossible for a single number to contain ten numbers.
There is only one combination since the order of the numbers in a combination does not matter.
There are more 12-digit palindromic numbers than 11-digit palindromic numbers. This is because the number of possible 12-digit palindromic numbers is greater than the number of possible 11-digit palindromic numbers. In general, the number of palindromic numbers of length n is 9 * 10^((n-1)/2), so for 11-digit palindromic numbers, there are 9 * 10^5 = 900,000 possibilities, while for 12-digit palindromic numbers, there are 9 * 10^6 = 9,000,000 possibilities.
Highest 2-digit number = 99 Highest 1-digit number = 9 Highest possible sum from 2, 2-digit numbers = 198 Highest possible sum from 2, 1-digit numbers = 18
every number from 0000 to 9999
Technically, that is not possible. A digit is another word for a number and it would be impossible for a single number to contain ten numbers.
Assuming that the first digit of the 4 digit number cannot be 0, then there are 9 possible digits for the first of the four. Also assuming that each digit does not need to be unique, then the next three digits of the four can have 10 possible for each. That results in 9x10x10x10 = 9000 possible 4 digit numbers. If, however, you can not use the same number twice in completing the 4 digit number, and the first digit cannot be 0, then the result is 9x9x8x7 = 4536 possible 4 digit numbers. If the 4 digit number can start with 0, then there are 10,000 possible 4 digit numbers. If the 4 digit number can start with 0, and you cannot use any number twice, then the result is 10x9x8x7 = 5040 possilbe 4 digit numbers.
Winning number for tonight
102 = 100 which is the first possible three digit number that is a perfect square. 312 = 961 which is the last possible three digit number that is a perfect square. So there are 22 three digit positive numbers that are perfect squares.
what is the least possible sum of two 4-digit numbers?what is the least possible sum of two 4-digit numbers?
There is only one combination since the order of the numbers in a combination does not matter.
There are more 12-digit palindromic numbers than 11-digit palindromic numbers. This is because the number of possible 12-digit palindromic numbers is greater than the number of possible 11-digit palindromic numbers. In general, the number of palindromic numbers of length n is 9 * 10^((n-1)/2), so for 11-digit palindromic numbers, there are 9 * 10^5 = 900,000 possibilities, while for 12-digit palindromic numbers, there are 9 * 10^6 = 9,000,000 possibilities.
10 because 10 is the first 2 digit number out of all numbers.
There are 36 possible characters (26 letters + 10 numbers) that can be used in each position of the 11-digit combination. Therefore, the total number of possible combinations is 36^11, which is approximately 7.52 x 10^17. This means there are over 750 quadrillion possible 11-digit combinations of letters A-Z and numbers 0-9 when combined.
Total number of possible 3-digit numbers = 9!x10!10!