You first need to understand the geometric figure called a sphere. The sphere has 8 90 degree angles, it is made up of 4 rectangles and 2 squares. in the center it contains molten rock. the volume formula is abel * molten rock= crack size. once you know this you do nothing and hope you randomly figure out the real formula. have a nice day. and good luck to you.
The scale factor of the dilation that transforms triangle PQR to triangle P'Q'R' can be determined by comparing the lengths of corresponding sides of the triangles. If, for example, the length of side PQ is 4 units and the length of side P'Q' is 8 units, the scale factor would be 8/4 = 2. This means that triangle P'Q' is twice the size of triangle PQR, indicating a dilation with a scale factor of 2.
length
Actually, when dilating a triangle, the angles remain unchanged while the side lengths are proportionally increased or decreased based on the scale factor of the dilation. Dilation is a transformation that enlarges or reduces a shape while maintaining its overall proportions. Therefore, the triangle's shape is preserved, but its size changes according to the dilation factor.
When you dilate a triangle with a scale factor of 2, each vertex of the triangle moves away from the center of dilation, doubling the distance from that point. As a result, the new triangle retains the same shape and angles as the original triangle but has sides that are twice as long. This means the area of the dilated triangle becomes four times larger than the original triangle's area.
To graph a dilation, first identify the center of dilation and the scale factor. For each point of the original figure, measure the distance from that point to the center of dilation, then multiply that distance by the scale factor to find the new distance from the center. Plot the new points at these distances, and connect them to form the dilated figure. Ensure that the orientation remains the same and that the shape is proportional to the original.
0.5
Center and Scale Factor....
The scale factor of the dilation that transforms triangle PQR to triangle P'Q'R' can be determined by comparing the lengths of corresponding sides of the triangles. If, for example, the length of side PQ is 4 units and the length of side P'Q' is 8 units, the scale factor would be 8/4 = 2. This means that triangle P'Q' is twice the size of triangle PQR, indicating a dilation with a scale factor of 2.
length
length
length
Actually, when dilating a triangle, the angles remain unchanged while the side lengths are proportionally increased or decreased based on the scale factor of the dilation. Dilation is a transformation that enlarges or reduces a shape while maintaining its overall proportions. Therefore, the triangle's shape is preserved, but its size changes according to the dilation factor.
The perimeter to area ratio.
The two key characteristics of a dilation are the center of dilation and the scale factor. The center of dilation is a fixed point in the plane from which all other points are expanded or contracted. The scale factor determines how much the figure is enlarged or reduced; a scale factor greater than one enlarges the figure, while a scale factor between zero and one reduces it. Dilation preserves the shape of the figure but changes its size.
When you dilate a triangle with a scale factor of 2, each vertex of the triangle moves away from the center of dilation, doubling the distance from that point. As a result, the new triangle retains the same shape and angles as the original triangle but has sides that are twice as long. This means the area of the dilated triangle becomes four times larger than the original triangle's area.
To solve a dilation problem, you first need to identify the center of dilation and the scale factor. The scale factor indicates how much larger or smaller the figure will be compared to the original. For each point on the original figure, you calculate the new coordinates by multiplying the distances from the center of dilation by the scale factor. Finally, plot the new points to create the dilated figure.
Negative