To construct the midpoint of a line segment by folding paper, first, place the line segment horizontally on the paper. Then, fold the paper in half so that the endpoints of the segment meet, ensuring the fold creates a crease that runs perpendicular to the segment. Unfold the paper, and the crease you made will indicate the midpoint of the line segment. You can mark this point for clarity.
Yes, the midpoint of a given line segment must lie on the line segment itself. The midpoint is defined as the point that divides the segment into two equal parts, which means it is located directly between the endpoints of the segment. Therefore, by definition, the midpoint is always a point on the line segment.
Yes, the midpoint of a given line segment must lie on that line segment. The midpoint is defined as the point that is equidistant from both endpoints of the segment, effectively dividing it into two equal parts. Therefore, by definition, the midpoint cannot exist outside of the line segment itself.
To construct a perpendicular segment through a given point using paper folding, start by folding the paper in half to create a crease that represents a line. Then, unfold the paper and fold it such that the given point lies on the crease, ensuring that the crease is perpendicular to the original fold. Finally, the intersection of the two creases will provide the desired perpendicular segment through the point. This method utilizes the properties of folds to achieve precise angles without the need for measurements.
Adjust the compass to the given line segment then construct the circle.
It finds the co-ordinates of the midpoint of a line segment, given the co-ordinates of the two endpoints.
the endpoints lie on each other
Finding the midpoint of a segment Drawing a perpendicular line segment from a given point to a given segment Drawing a perpendicular line segment through a given point on a given segment Drawing a line through a given point parallel to a given line
Finding the midpoint of a segment Drawing a perpendicular line segment from a given point to a given segment Drawing a perpendicular line segment through a given point on a given segment Drawing a line through a given point parallel to a given line
Finding the midpoint of a segment Drawing a perpendicular line segment from a given point to a given segment Drawing a perpendicular line segment through a given point on a given segment Drawing a line through a given point parallel to a given line
Yes, the midpoint of a given line segment must lie on the line segment itself. The midpoint is defined as the point that divides the segment into two equal parts, which means it is located directly between the endpoints of the segment. Therefore, by definition, the midpoint is always a point on the line segment.
Yes, the midpoint of a given line segment must lie on that line segment. The midpoint is defined as the point that is equidistant from both endpoints of the segment, effectively dividing it into two equal parts. Therefore, by definition, the midpoint cannot exist outside of the line segment itself.
To construct a perpendicular segment through a given point using paper folding, start by folding the paper in half to create a crease that represents a line. Then, unfold the paper and fold it such that the given point lies on the crease, ensuring that the crease is perpendicular to the original fold. Finally, the intersection of the two creases will provide the desired perpendicular segment through the point. This method utilizes the properties of folds to achieve precise angles without the need for measurements.
true
upon itself
Adjust the compass to the given line segment then construct the circle.
double the length
It finds the co-ordinates of the midpoint of a line segment, given the co-ordinates of the two endpoints.