Chat with our AI personalities
It can be negative, zero or positive.
The Greek word "kurtosis", when translated to English, means the probability theory of any measure of the "peakedness" of a real valued random variable.
For N(0, 1) it is 3.
The kurtosis of a distribution is defined as the fourth central moment divided by the square of the second central moment. Unfortunately, this browser converts Greek characters to the Roman alphabet so I cannot use standard forms of equations but: Suppose that for a random variable X, E(X) = m (mu) and E[(X - E(X))2] = V = s2 (sigma-squared) then Kurtosis = E[(X - E(X))4]/s4. Excess Kurtosis is then Kurtosis - 3. If excess kurtosis < 0 the distribution is platykurtic. They have a peak that is lower than the Normal: the peak is flat and broad. The tails of the distribution are narrow. Uniform distributions are platykurtic. A mesokurtic distibution has excess kurtosis = 0. The Gaussian (Normal) distribution - whatever its parameters - is mesokurtic. The binomial with probability of success close to 1/2 is also considered to be mesokurtic. If excess kurtosis is > 0 the distribution is leptokurtic. Leptokurtic distributions have a high and narrow peak. A good example is the Student's t distribution.
That is correct. If you subtract a positive number from a negative number, your result is negative.