Not every relation is a function. But every function is a relation. Function is just a part of relation.
A function is a relation whose mapping is a bijection.
No. A relation is not a special type of function.
Good question. A relation is simply that; any x-value to create any y-value. A function, however, cannot be defined for multiple values of x. In other words, for a relation to be a function, it must have singular values for all x within its domain.
That is part of the definition of a function.
A relation is a mapping from elements of one set, called the domain, to elements of another set, called the range. The function of the three terms: relation, domain and range, is to define the parameters of a mapping which may or may not be a function.
u(t)-u(-t)=sgn(t)
Not every relation is a function. But every function is a relation. Function is just a part of relation.
No, a function must be a relation although a relation need not be a functions.
Does the graph above show a relation, a function, both a relation and a function, or neither a relation nor a function?
yes.
A function is a relation whose mapping is a bijection.
Not every relation is a function. A function is type of relation in which every element of its domain maps to only one element in the range. However, every function is a relation.
No. A relation is not a special type of function.
No. Functions should be defined separately. So you would not define a function within a function. You can define one function, and while defining another function, you can call the first function from its code.
A relation is a function if every input has a distinct output.
Good question. A relation is simply that; any x-value to create any y-value. A function, however, cannot be defined for multiple values of x. In other words, for a relation to be a function, it must have singular values for all x within its domain.