you draw a triangle formed by the centers of the two circles and use pythagoean theorem
it intersects the segment joining the centers of two circles
Common external tangents and common internal tangents are two types of tangents that can be drawn between two circles. Common external tangents touch each circle at one point without intersecting the line segment joining the circles' centers, while common internal tangents intersect this line segment. The key difference lies in their geometric relationship to the circles: external tangents do not pass between the circles, whereas internal tangents do. Each type can be determined based on the relative positions and sizes of the circles involved.
The tangent-tangent angle is formed by two tangents drawn from a point outside a circle to points on the circle. To find the measure of the tangent-tangent angle, you take half the difference of the intercepted arcs. In this case, the arcs measure 135 degrees and 225 degrees. Therefore, the measure of the tangent-tangent angle is (\frac{1}{2} (225^\circ - 135^\circ) = \frac{1}{2} (90^\circ) = 45^\circ).
You times it by 2....UR WELCOME
196-164/2= 16
it intersects the segment joining the centers of two circles
Common external tangents and common internal tangents are two types of tangents that can be drawn between two circles. Common external tangents touch each circle at one point without intersecting the line segment joining the circles' centers, while common internal tangents intersect this line segment. The key difference lies in their geometric relationship to the circles: external tangents do not pass between the circles, whereas internal tangents do. Each type can be determined based on the relative positions and sizes of the circles involved.
[1+(y')2]3 = [yy"+1+(y')2]2
Hey, this one is nice! I will venture the following: * 3: make them tangent in one point, with no intersection * 2: make them have a small intersection, ie. crossing in two points * 1: make them tangent from the inside * 0: make one fall completely within the other Giving the explanation would just be killing the imagination.
4
The question is suppose to read: Find the equation of the line tangent to y=(x²+3x)²(2x-2)³, when x=8
The tangent-tangent angle is formed by two tangents drawn from a point outside a circle to points on the circle. To find the measure of the tangent-tangent angle, you take half the difference of the intercepted arcs. In this case, the arcs measure 135 degrees and 225 degrees. Therefore, the measure of the tangent-tangent angle is (\frac{1}{2} (225^\circ - 135^\circ) = \frac{1}{2} (90^\circ) = 45^\circ).
You times it by 2....UR WELCOME
196-164/2= 16
236-124/2=56 degrees
The arc tangent is the recicple of the tangent which is also known as the cotangent. The tangent of π/2 is undefined, thus the cotangent would be zero.
They are used to find the angle or side measurement of a right triangle. For example, if 2 sides of a right triangle have known values and an angle has a known measurement, you can find the third side by using sine, cosine or tangent.