First the formula is g(x)=ax2+bx+c First find where the parabola cuts the x axis Then find the equation of the axis of symmetry Then
y = 2x + 2 + 4x+ 2 = 6x + 4 This is NOT a symmetric function and so there is no axis of symmetry.
X= -b / 2a
When you graph the quadratic equation, you have three possibilities... 1. The graph touches x-axis once. Then that quadratic equation only has one solution and you find it by finding the x-intercept. 2. The graph touches x-axis twice. Then that quadratic equation has two solutions and you also find it by finding the x-intercept 3. The graph doesn't touch the x-axis at all. Then that quadratic equation has no solutions. If you really want to find the solutions, you'll have to go to imaginary solutions, where the solutions include negative square roots.
The solutions to a quadratic equation on a graph are the two points that cross the x-axis. NB A graphed quadratic equ'n produces a parabolic curve. If the curve crosses the x-axis in two different points it has two solution. If the quadratic curve just touches the x-axis , there is only ONE solution. It the quadratic curve does NOT touch the x-axis , then there are NO solutions. NNB In a quadratic equation, if the 'x^(2)' value is positive, then it produces a 'bowl' shaped curve. Conversely, if the 'x^(2)' value is negative, then it produces a 'umbrella' shaped curve.
The zeros of a quadratic function, if they exist, are the values of the variable at which the graph crosses the horizontal axis.
First the formula is g(x)=ax2+bx+c First find where the parabola cuts the x axis Then find the equation of the axis of symmetry Then
Complete the square, then find the value of x that would make the bracket zero ax^2 + bx + c = 0 line of symmetry is x = (-b/2a)
y = 2x + 2 + 4x+ 2 = 6x + 4 This is NOT a symmetric function and so there is no axis of symmetry.
The quadratic equation is used to find the intercepts of a function (F(x)=x^(2*n), n being an even number) along its primary axis (typically the x axis). Many equations follow this form. The information given by the quadratic equation depends on what your function is pertaining to. If say you have a velocity vs time graph, when the function crosses the xaxis your particle has changed from a positive velocity to a negative velocity. This information can be useful to determine the accompanying behavior of your position. The quadratic equation is simply a tool to find intercepts of a function.
X= -b / 2a
Your equation must be in y=ax^2+bx+c form Then the equation is x= -b/2a That is how you find the axis of symmetry
When you graph the quadratic equation, you have three possibilities... 1. The graph touches x-axis once. Then that quadratic equation only has one solution and you find it by finding the x-intercept. 2. The graph touches x-axis twice. Then that quadratic equation has two solutions and you also find it by finding the x-intercept 3. The graph doesn't touch the x-axis at all. Then that quadratic equation has no solutions. If you really want to find the solutions, you'll have to go to imaginary solutions, where the solutions include negative square roots.
Quadratic functions are used to describe free fall.
Well,this is an impossible question to answer.The world may never know
The solutions to a quadratic equation on a graph are the two points that cross the x-axis. NB A graphed quadratic equ'n produces a parabolic curve. If the curve crosses the x-axis in two different points it has two solution. If the quadratic curve just touches the x-axis , there is only ONE solution. It the quadratic curve does NOT touch the x-axis , then there are NO solutions. NNB In a quadratic equation, if the 'x^(2)' value is positive, then it produces a 'bowl' shaped curve. Conversely, if the 'x^(2)' value is negative, then it produces a 'umbrella' shaped curve.
The quadratic formula is used today to find the solutions to quadratic equations, which are equations of the form ax^2 + bx + c = 0. By using the quadratic formula, we can determine the values of x that satisfy the quadratic equation and represent the points where the graph of the equation intersects the x-axis.