∫ tan(x) dx =
∫ sin(x)/cos(x) dx
Let cos(x) = u
Therefore, sin(x) = -du/dx >>>> (Derivative of cos(x))
∫ (-du/dx)/u dx >>>>>>>>>>> Substitute the values
∫ -du/udx dx
∫ -du/u >>>>>>>>>>>>>>>>> dx * 1/dx cancel each other out
∫ -1/u du
= -ln(u) + C
= -ln(cos(x)) + C >>>>>>>>>>> Substitute cos(x) back into u
Chat with our AI personalities
See related link below for answer
It isn't clear what you mean by "underroot"; I am not aware of a mathematical function by that name.
Tanx was created in 1972-10.
(tanx+cotx)/tanx=(tanx/tanx) + (cotx/tanx) = 1 + (cosx/sinx)/(sinx/cosx)=1 + cos2x/sin2x = 1+cot2x= csc2x This is a pythagorean identity.
(-x+tanx)'=-1+(1/cos2x)