answersLogoWhite

0


Best Answer

This is a trigonometric integration using trig identities.

S tanX^3 secX dX

S tanX^2 secX tanX dX

S (secX^2 -1) secX tanX dX

u = secX

du = secX tanX

S ( u^2 - 1) du

1/3secX^3 - secX + C

User Avatar

Wiki User

โˆ™ 2010-11-22 02:47:47
This answer is:
User Avatar
Study guides

Algebra

20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

โžก๏ธ
See all cards
3.74
โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…
1190 Reviews

Add your answer:

Earn +20 pts
Q: What is the integral of tan cubed x secx dx?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the integral of tanx times sqrt secx dx?

See related link below for answer


What is the derivative of secxtanx?

d/dx(uv)=u*dv/dx+v*du/dxd/dx(secxtanx)=secx*[d/dx(tanx)]+tanx*[d/dx(secx)]-The derivative of tanx is:d/dx(tan u)=[sec(u)]2*d/dx(u)d/dx(tan x)=[sec(x)]2*d/dx(x)d/dx(tan x)=[sec(x)]2*(1)d/dx(tan x)=(sec(x))2=sec2(x)-The derivative of secx is:d/dx(sec u)=[sec(u)tan(u)]*d/dx(u)d/dx(sec x)=[sec(x)tan(x)]*d/dx(x)d/dx(sec x)=[sec(x)tan(x)]*(1)d/dx(sec x)=sec(x)tan(x)d/dx(secxtanx)=secx*[sec2(x)]+tanx*[sec(x)tan(x)]d/dx(secxtanx)=sec3(x)+sec(x)tan2(x)


Intergrate sec x?

Sec x dx = sec x (secx + tanx)/ (secx + tanx) dx . therefore the answer is ln |secx + tanx|


Integration by parts of x tanx?

XtanX dx formula uv - int v du u = x du = dx dv = tanX dx v = ln(secX) x ln(secX) - int ln(secx) dx = X ln(secx) - x ln(secx) - x + C -----------------------------------------


Integration of tan pow4x?

integral of (tanx)^4 (tanx)^4 = (tanx)^2 (tanx)^2 =(sec^2 x - 1)(tan^2 x) =(sec^2 x)(tan^2 x) - tan^2 x = integral of sec^2 x tan^2 x dx - integral of tan^2 x dx First, integral of sec^2 x tan^2 x dx Let u = tanx because that would make du = sec^2 x dx so then we have integral of u^2 du which is (1/3)u^3 substituting back in tanx we get (1/3)tan^3 x Next, integral of tan^2 x tan^2 x = sec^2 x -1 integral of sec^2 x - 1 = integral of sec^2 x dx - integral 1 dx = tanx - x so putting it all together we have integral of tan^4 x dx = (1/3)tan^3 x - tanx + x + C


Integral of 1 divided by sinx cosx?

Integral of [1/(sin x cos x) dx] (substitute sin2 x + cos2 x for 1)= Integral of [(sin2 x + cos2 x)/(sin x cos x) dx]= Integral of [sin2 x/(sin x cos x) dx] + Integral of [cos2 x/(sin x cos x) dx]= Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx)= Integral of tan x dx + Integral of cot x dx= ln |sec x| + ln |sin x| + C


What is the integral of tan squared x?

Note that for sec²(x) - tan²(x) = 1, we have: -tan²(x) = 1 - sec²(x) tan²(x) = sec²(x) - 1 Rewrite the expression as: ∫ (sec²(x) - 1) dx = ∫ sec²(x) dx - ∫ 1 dx Finally, integrate each expression to get: tan(x) - x + K where K is the arbitrary constant


Integral of tan square x secant x?

convert tan^2x into sin^2x/cos^2x and secant x into 1/cos x combine terms for integral sin^2x/cos^3x dx then sub in u= cos^3x and du=-2sin^2x dx


What is the integral of tan x-3 dx?

In this specific example one would need to use the u substitution method. * Set u to be x - 3 * Derive x - 3 * u = x - 3 * du = dx Now that we have integrated u we can remove the x - 3 and substitute in u and remove the dx and substitute in du. This is what we have after substituting: * (the integrand of) tan(u)du Now integrate tan(u)du * the Integral of tan(u)du is: * sec2(u) Now resubstitute what we set as u. In this case we set x - 3 to u. This will give us our final answer and integral of tan(x-3)dx. * sec2(x - 3)


Integration of square root tan x dx?

for solving this ..the first thing to do is substitute tanx=t^2 then x=tan inverse t^2 then solve the integral..


What is the integral of the tangent of x with respect to x?

∫ tan(x) dx = -ln(cos(x)) + C C is the constant of integration.


Integral of -3 dx?

-3x

People also asked