Loss factor is best obtained by dynamically loading (extensional, torsional etc.) a specimen of the material and plotting the hysteresis curve in stress-vs strain plane. If the total area under the hysteresis loop is D, the loss factor is computed from the following formula Loss factor=D/(2*pi*max stress* max strain) For lightly damped materials, loss factor is just twice the daming factor 'zeta' which obtained either by log-decrement method or half-power bandwidth method. Loss factor is best obtained by dynamically loading (extensional, torsional etc.) a specimen of the material and plotting the hysteresis curve in stress-vs strain plane. If the total area under the hysteresis loop is D, the loss factor is computed from the following formula Loss factor=D/(2*pi*max stress* max strain) For lightly damped materials, loss factor is just twice the daming factor 'zeta' which obtained either by log-decrement method or half-power bandwidth method.
Chat with our AI personalities
dB (decibel) is a logarithmic measure of the ratio of two power values, for example, two signal strengths. This is often used for power gain or power loss. For example, a loss of 10 dB means that the signal degrades by a factor of 10, a loss of 20 dB means that the signal degrades by a factor of 100, and a loss of 30 dB means that the signal degrades by a factor of 1000.
Loss of 1269.84!
Take width x Height of the plenum, Calculate Equivalent Diameter, Then for the specified air flow rate, Find the Static loss factor( feet / 100 feet of WC). then Calculate Friction Head ie,((Feet/100 ft of WC x Length of the plenum)/100)
The answer depends on percentage of WHAT!
(New amount - Original amt) / Original amount = loss percentage. saurabh K.