Period = reciprocal of ('1' divided by) the frequency = 1/256 = 0.00390625 second
The frequency is the reciprocal of the period; in this case, divide 1 / 4x10-7.
T = 1/f T = 1/(50 Hz) = .02 sec
The answer is in the question! 5 Hz Also, a wavelength cannot be 5 cycles - wrong units.
Wavelength = (speed)/(frequency)Frequency = 1/periodso wavelength = (speed) x (period)Speed = (20 meter/min) x (1 min/60 sec) = 1/3 meter/secWavelength = (speed) x (period) = (1/3 meter/sec) x (30 sec) = 10 metersThe correct choice is a .
2.01 seconds.
The period of a waveform is the reciprocal of its frequency. For a clock waveform with a frequency of 500 kHz, the period can be calculated as 1 / 500 kHz = 2 microseconds.
The frequency is the reciprocal of the period; in this case, divide 1 / 4x10-7.
Frequency = 1/period = 1/5.5 = 0.182 Hz(rounded)
The period is the reciprocal of the frequency. 1 / 2 million Hz = 500 ns or 0.5 us (microseconds).
Time period T = 1 / frequency f. Frequency f = 1 / time period T. T = 1 / f = 1 / 200 = 0.005 seconds = 5 milliseconds.
The period of a sound wave is the time it takes for one complete wave cycle to pass a fixed point. To find the period, we can use the formula: Period = 1 / Frequency. If we know the speed of sound in air is approximately 343 m/s, we can calculate the frequency using the formula: Frequency = Speed / Wavelength. Consequently, the period will be: Period = 1 / Frequency.
The frequency of a vibrating body is the number of oscillations it completes in one second. To find the frequency of a vibrating body with a time period of 0.3 seconds, you would calculate the reciprocal of the time period (1/0.3) which equals approximately 3.33 Hz (Hertz). So, the frequency of the vibrating body is 3.33 Hz.
Overtone
T = 1/f T = 1/(50 Hz) = .02 sec
The period of a waveform is the reciprocal of its frequency. In this case, if the frequency is 4 MHz (4 million cycles per second), the period would be 1 divided by 4 million, which equals 0.25 microseconds.
You solve this as follows: 1) Decide on a number for the speed of sound. Note that the speed of sound in air is quite different to the speed of sound in water, for example. Convert this speed to meters/second, if it isn't already in meters/second. 2) Divide the speed by the wavelength, to get the frequency. 3) The period is simply the reciprocal of the frequency.
Divide the speed of sound by the wavelength, to get the frequency. The period is the reciprocal of the frequency. The speed of sound in air is about 343 meters/second, but it depends on temperature. The speed of sound in other materials is quite different from the speed of sound in air.