The sum of the numbers 1 through 50 can be found using the formula for the sum of an arithmetic series: [(n/2) * (first term + last term)], where n is the number of terms. In this case, n = 50 and the first term is 1 and the last term is 50. Plugging those values into the formula, the sum is 1275.
There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .
-2 3/4 - 1/4 = -(2 3/4 + 1/4) = -[2 (3+1)/4] = -(2 4/4) = -(2 + 1) = -3 or -2 3/4 - 1/4 = - (4*2 + 3)/4 - 1/4 = -11/4 - 1/4 = (-11 - 1)/4 = -12/4 = -3
3/6 x 2/2 = 6/12 1/4 x 3/3 = 3/12 6/12 - 3/12 = 3/12 = 1/4 Answer: 1 quarter ------------------------------------- 3/6 - 1/4 = (1×3)/(2×3) - 1/4 = 1/2 - 1/4 = (1×2)/(2×2) - 1/4 = 2/4 - 1/4 = 1/4
3 3/4 - 1 1/4 = 2 2/4 = 2 1/2 15 / 4 - 5/ 4 = 10/ 4 = 2 2/ 4 = 2 1/2
sum of n natural number is n(n+1)/2 first 50 number sum is 50(50+1)/2 = 1275
1+2 = 3 1+2+3 = 6 1+2+3+4 = 10 1+2+...+ N = 1/2(N+1)N if N = 50, 1+2+...+50 = 1/2 x 51 x 50 = 1275 Since 2+4+6+...+100 = 2 x (1+2+3+...+50) = 2 x 1275 = 2550
1 1 1 2 1 3 1 4 2 1 2 2 2 3 2 4 3 1 3 2 3 3 3 4 4 1 4 2 4 3 4 4
The sum of the numbers 1 through 50 can be found using the formula for the sum of an arithmetic series: [(n/2) * (first term + last term)], where n is the number of terms. In this case, n = 50 and the first term is 1 and the last term is 50. Plugging those values into the formula, the sum is 1275.
[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7
There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .
-2 3/4 - 1/4 = -(2 3/4 + 1/4) = -[2 (3+1)/4] = -(2 4/4) = -(2 + 1) = -3 or -2 3/4 - 1/4 = - (4*2 + 3)/4 - 1/4 = -11/4 - 1/4 = (-11 - 1)/4 = -12/4 = -3
one and a half 1/2 = 2/4 half of 2/4 = 1/4 2/4 + 1/4 = 3/4 ------------------------------------------- 3/4 ÷ 1/2 = 3/4 × 2/1 = (3×2)/(4×1) = 6/4 = 3/2 = 1½
hdbefaioearhgiuqgiiiiiiiiiiiiiiiiiiiiiiiiiiiiifvrnnnnbaqhfiuqehifhfuohyq38hfrusbvueqhfiuahfuihfrieuhfdiusuhqiufhifuhiahiehfihfurhuioahefiwheiwhdiuhiheiwhfeghuhfijeiund
1 1/4 - 3/4 = (1×4+1)/4 - 3/4 = 5/4 - 3/4 = (5-3)/4 = 2/4 = (1×2)/(2×2) = 1/2
1=1 2=2 3=3 4=4 5=4+1 6=4+2 7=4+3 8=4+4 9=4+4+1 or 3+3+3 10=1+2+3+4 now 11 of course is 10 + 1 so 11=1+2+3+4+1 12 is =1+2+3+4+2 13=1+2+3+4+3 and so on 20=2*(1+2+3+4) 21 =(2*(1+2+3+4))+1 and so on and 100=(1+2+3+4)*(1+2+3+4)
3/6 x 2/2 = 6/12 1/4 x 3/3 = 3/12 6/12 - 3/12 = 3/12 = 1/4 Answer: 1 quarter ------------------------------------- 3/6 - 1/4 = (1×3)/(2×3) - 1/4 = 1/2 - 1/4 = (1×2)/(2×2) - 1/4 = 2/4 - 1/4 = 1/4