P(2x3) - 1/4
where P(n) is the n-th prime.
The sum of the numbers 1 through 50 can be found using the formula for the sum of an arithmetic series: [(n/2) * (first term + last term)], where n is the number of terms. In this case, n = 50 and the first term is 1 and the last term is 50. Plugging those values into the formula, the sum is 1275.
There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .
-2 3/4 - 1/4 = -(2 3/4 + 1/4) = -[2 (3+1)/4] = -(2 4/4) = -(2 + 1) = -3 or -2 3/4 - 1/4 = - (4*2 + 3)/4 - 1/4 = -11/4 - 1/4 = (-11 - 1)/4 = -12/4 = -3
3/6 x 2/2 = 6/12 1/4 x 3/3 = 3/12 6/12 - 3/12 = 3/12 = 1/4 Answer: 1 quarter ------------------------------------- 3/6 - 1/4 = (1×3)/(2×3) - 1/4 = 1/2 - 1/4 = (1×2)/(2×2) - 1/4 = 2/4 - 1/4 = 1/4
3 3/4 - 1 1/4 = 2 2/4 = 2 1/2 15 / 4 - 5/ 4 = 10/ 4 = 2 2/ 4 = 2 1/2
sum of n natural number is n(n+1)/2 first 50 number sum is 50(50+1)/2 = 1275
1+2 = 3 1+2+3 = 6 1+2+3+4 = 10 1+2+...+ N = 1/2(N+1)N if N = 50, 1+2+...+50 = 1/2 x 51 x 50 = 1275 Since 2+4+6+...+100 = 2 x (1+2+3+...+50) = 2 x 1275 = 2550
1 1 1 2 1 3 1 4 2 1 2 2 2 3 2 4 3 1 3 2 3 3 3 4 4 1 4 2 4 3 4 4
The sum of the numbers 1 through 50 can be found using the formula for the sum of an arithmetic series: [(n/2) * (first term + last term)], where n is the number of terms. In this case, n = 50 and the first term is 1 and the last term is 50. Plugging those values into the formula, the sum is 1275.
[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7
There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .
-2 3/4 - 1/4 = -(2 3/4 + 1/4) = -[2 (3+1)/4] = -(2 4/4) = -(2 + 1) = -3 or -2 3/4 - 1/4 = - (4*2 + 3)/4 - 1/4 = -11/4 - 1/4 = (-11 - 1)/4 = -12/4 = -3
one and a half 1/2 = 2/4 half of 2/4 = 1/4 2/4 + 1/4 = 3/4 ------------------------------------------- 3/4 ÷ 1/2 = 3/4 × 2/1 = (3×2)/(4×1) = 6/4 = 3/2 = 1½
hdbefaioearhgiuqgiiiiiiiiiiiiiiiiiiiiiiiiiiiiifvrnnnnbaqhfiuqehifhfuohyq38hfrusbvueqhfiuahfuihfrieuhfdiusuhqiufhifuhiahiehfihfurhuioahefiwheiwhdiuhiheiwhfeghuhfijeiund
1 1/4 - 3/4 = (1×4+1)/4 - 3/4 = 5/4 - 3/4 = (5-3)/4 = 2/4 = (1×2)/(2×2) = 1/2
1=1 2=2 3=3 4=4 5=4+1 6=4+2 7=4+3 8=4+4 9=4+4+1 or 3+3+3 10=1+2+3+4 now 11 of course is 10 + 1 so 11=1+2+3+4+1 12 is =1+2+3+4+2 13=1+2+3+4+3 and so on 20=2*(1+2+3+4) 21 =(2*(1+2+3+4))+1 and so on and 100=(1+2+3+4)*(1+2+3+4)
1. Divide 1035 in the ratio of 2:3:4.2. A father wants to leave $4675 to his four children in the ratio of 1:3:3:4. How much will each of the four children receive?3. John plans to donate his collection of 3042 books to three libraries in the ratio of 1:3:5. How many books will each library get?To get the answer, divide the number representing the total, by the sum of the terms in the ratio then, multiply the quotient by each of the term in the ratio.1. 1035 = number representing the total2, 3 and 4 = terms in the ratio9 = sum of the terms in the ratio1035 / 9 = 115then, multiply 115 by each of the term in the ratio115 X 2 = 230115 X 3 = 345115 X 4 = 460Final Answer = 230, 345 and 460To check, add them all230 + 345 + 460 = 10352. $4675 = total amount father wants to leave to the children1, 3, 3 and 4 = terms in the ratio11 = sum of the terms in the ratio$4675 / 11 = $425so, we need to multiply this by each of the term in the ratio$425 x 1 = $425$425 x 3 = $ 1275$425 x 3 = $ 1275$425 x 4 = $ 1700Final Answer = $425, $1275, $1275 and $1700To check,$425 + $ 1275 + $ 1275 + $ 1700 = $ 46753. 3042 = total number of books1, 3 and 5 = terms in the ratio9 = sum of the terms in the ratio3042 / 9 = 338when multiplied by each term in the ratio, we get338 x 1 = 338338 x 3 = 1014338 x 5 = 1690Final Answer = 338, 1014 and 1690to check338 + 1014 + 1690 = 3042