P(2x3) - 1/4
where P(n) is the n-th prime.
Chat with our AI personalities
There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .
-2 3/4 - 1/4 = -(2 3/4 + 1/4) = -[2 (3+1)/4] = -(2 4/4) = -(2 + 1) = -3 or -2 3/4 - 1/4 = - (4*2 + 3)/4 - 1/4 = -11/4 - 1/4 = (-11 - 1)/4 = -12/4 = -3
The sum of the numbers 1 through 50 can be found using the formula for the sum of an arithmetic series: [(n/2) * (first term + last term)], where n is the number of terms. In this case, n = 50 and the first term is 1 and the last term is 50. Plugging those values into the formula, the sum is 1275.
3/6 x 2/2 = 6/12 1/4 x 3/3 = 3/12 6/12 - 3/12 = 3/12 = 1/4 Answer: 1 quarter ------------------------------------- 3/6 - 1/4 = (1×3)/(2×3) - 1/4 = 1/2 - 1/4 = (1×2)/(2×2) - 1/4 = 2/4 - 1/4 = 1/4
3 3/4 - 1 1/4 = 2 2/4 = 2 1/2 15 / 4 - 5/ 4 = 10/ 4 = 2 2/ 4 = 2 1/2