cos2x + 2sinx - 2 = 0 (1-2sin2x)+2sinx-2=0 -(2sin2x-2sinx+1)=0 -2sinx(sinx+1)=0 -2sinx=0 , sinx+1=0 sinx=0 , sinx=1 x= 0(pi) , pi/2 , pi
4 sin2x = 1. Then, (2sinx)2 = 1, 2sinx = ±1, and sinx = ±½. Whence, x = 90° or 270°; or, in radians, x = π/2 or 3π/2.
x2+1/4x = 0 x(x+1/4) = 0 Therefore: x = 0 or x = -1/4
X = 0 (zero) Y = -1 (neg 1)
(4 ± i2) where i2 = -1
2sinx - sin3x = 0 2sinx - 3sinx + 4sin3x = 0 4sin3x - sinx = 0 sinx(4sin2x - 1) = 0 sinx*(2sinx - 1)(2sinx + 1) = 0 so sinx = 0 or sinx = -1/2 or sinx = 1/2 It is not possible to go any further since the domain for x is not defined.
cos2x + 2sinx - 2 = 0 (1-2sin2x)+2sinx-2=0 -(2sin2x-2sinx+1)=0 -2sinx(sinx+1)=0 -2sinx=0 , sinx+1=0 sinx=0 , sinx=1 x= 0(pi) , pi/2 , pi
4 sin2x = 1. Then, (2sinx)2 = 1, 2sinx = ±1, and sinx = ±½. Whence, x = 90° or 270°; or, in radians, x = π/2 or 3π/2.
3*sin2x = 2*sinx +1
9x2-9x = 0 x2-x = 0 x(x-1) = 0 x = 1 or x = 0
16x³ - x = 0 By factorization, we obtain: x(16x² - 1) = 0 x(4x - 1)(4x + 1) = 0 Set each term by 0 and solve for x to get: x = 0 and 4x - 1 = 0 and 4x + 1 = 0 x = {0, ±¼}
-1 plus 1 = 0 plus 1 =1
2x2-x-3 = 0= 4 - x - 3 = 0= 1 - x = 0= 1 = xTherefore x = 1
x2+1/4x = 0 x(x+1/4) = 0 Therefore: x = 0 or x = -1/4
cos x - 1 = 0 cos(x) = 1 x = 0 +/- k*pi radians where k = 1,2,3,...
2sinxcosx-cosx=0 Factored : cosx(2sinx-1)=0 2 solutions: cosx=0 or sinx=.5 For cosx=0, x=90 or 270 degrees For sinx=.5, x=30 degrees x = {30, 90, 270}
X = 0 (zero) Y = -1 (neg 1)