answersLogoWhite

0

If the equation of the parabola isy = ax^2 + bx + c then the roots are

[-b +/- sqrt(b^2-4ac)]/(2a)

User Avatar

Wiki User

9y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

Does a parabola always have roots and a vertex?

An x2 parabola will always have one vertex, but depending on the discriminant of the function (b2-4ac) the parabola will either have 2 roots (it crosses the x-axis twice), 1 repeating root (the parabola meets the x-axis at a single point), or no real roots (the parabola doesn't meet the x-axis at all)


What are the steps solving a parabola?

The answer will depend onwhat you mean by "solving a parabola". A parabola has a directrix and a focus, a turning point, 0 1 or 2 roots and so on. Which of these is "solving"?The answer will depend onwhat you mean by "solving a parabola". A parabola has a directrix and a focus, a turning point, 0 1 or 2 roots and so on. Which of these is "solving"?The answer will depend onwhat you mean by "solving a parabola". A parabola has a directrix and a focus, a turning point, 0 1 or 2 roots and so on. Which of these is "solving"?The answer will depend onwhat you mean by "solving a parabola". A parabola has a directrix and a focus, a turning point, 0 1 or 2 roots and so on. Which of these is "solving"?


What is the root of a parabola?

In analytical geometry, the roots of a parabola are the x-values (if any) for which y = 0.


What is the average of the two roots of quadratic equation?

In a quadratic y = ax² + bx + c, the roots are where y = 0, and the parabola crosses the x-axis. The average of these two roots is the x coordinate of the vertex of the parabola.


How are the vertices of the parabolas related to the equation of the quadratic function?

Suppose the equation of the parabola is y = ax2 + bx + c where a, b, and c are constants, and a ≠ 0. The roots of the parabola are given by x = [-b ± sqrt(D)]/2a where D is the discriminant. Rather than solve explicitly for the coordinates of the vertex, note that the vertical line through the vertex is an axis of symmetry for the parabola. The two roots are symmetrical about x = -b/2a so, whatever the value of D and whether or not the parabola has real roots, the x coordinate of the vertex is -b/2a. It is simplest to substitute this value for x in the equation of the parabola to find the y-coordinate of the vertex, which is c - b2/2a.