To determine the highest value on the domain of a function, you first need to identify the function's domain, which consists of all permissible input values (x-values). The highest value would be the maximum point within that domain. If the domain is restricted to a specific interval, the highest value would be the endpoint of that interval, assuming the function is defined and continuous at that point. Always consider the behavior of the function at the boundaries of the domain to ensure you identify the correct maximum.
Knowing the zeros of a function helps determine where the function is positive by identifying the points where the function intersects the x-axis. Between these zeros, the function will either be entirely positive or entirely negative. By evaluating the function's value at points between the zeros, one can determine the sign of the function in those intervals, allowing us to establish where the function is positive. This interval analysis is crucial for understanding the function's behavior across its domain.
I cannot see the graph you are referring to. However, to determine the domain of a function, you need to identify all possible input values (x-values), while the range consists of all possible output values (y-values). If you provide more details about the function or its characteristics, I can help you determine the domain and range.
If a vertical line, within the domain of the function, intersects the graph in more than one points, it is not a function.
The domain of a function is simply the x values of the function
A number does not have a range and domain, a function does.
The domain of a function determines what values of x you can plug into it whereas the range of a function determines the values that are your results. Therefore, look at the y-axis if you want to determine the range of a function and look at the x-axis if you want to determine the domain.
.com
Assuming the domain is unbounded, the linear function continues to be a linear function to its end.
Knowing the zeros of a function helps determine where the function is positive by identifying the points where the function intersects the x-axis. Between these zeros, the function will either be entirely positive or entirely negative. By evaluating the function's value at points between the zeros, one can determine the sign of the function in those intervals, allowing us to establish where the function is positive. This interval analysis is crucial for understanding the function's behavior across its domain.
If a vertical line, within the domain of the function, intersects the graph in more than one points, it is not a function.
The domain of a function represented by a table consists of all the input values (usually the x-values) listed in the table. These values indicate the specific points at which the function is defined. To determine the domain, simply identify and list the unique x-values from the table. If any values are missing or not represented, they are excluded from the domain.
The domain of a function is simply the x values of the function
No, when the domain repeats it is no longer a function
Domain of the logarithm function is the positive real numbers. Domain of exponential function is the real numbers.
Find the maximum and minimum values that the function can take over all the values in the domain for the input. The range is the maximum minus the minimum.
The "x values that work are the domain numbers like for y=x+1 would be any real number. But, y= sqrx x would have to be non-negative.