All objects in free fall experience an acceleration due to gravity of 32 m/s² at all times. Some basic knowledge of physics gives us the equation
d=vi*t+1/2*a*t²
Where d is the distance traveled, vi is the initial velocity, t is the time of travel and a is the acceleration. Plugging in the values vi=0 (meaning theres no initial velocity), t=5.2s and a=-32m/s² (negative because gravity pulls you downward) we get the equation
d=0*5.2s + 1/2 * (-32 m/s²) * (5.2s)²
Which when simplified tells us that the distance fallen is 432.64 feet.
However, in real life, friction means that we will never get an answer as nice as this. Friction constantly opposes the motion of any moving object, meaning that in a given time less distance will be covered than estimated by this equation. Sadly, without knowing more about the object (its shape, mass, and composition) there's no way to calculate how much effect friction will have.
Chat with our AI personalities
0.7848 meter
After 3.5 seconds of free-fall on or near the surface of the Earth, (ignoring effectsof air resistance), the vertical speed of an object starting from rest isg T = 3.5 g = 3.5 x 9.8 = 34.3 meters per second.With no initial horizontal component, the direction of such an object's velocitywhen it hits the ground is straight down.
It depends if it is affected by air resistance or not. If not then all objects close to the surface of the Earth have an acceleration of 9.81ms^-2 in free fall. If it is affected by air resistance you need all sorts of more information to answer that question, like the drag coefficient of the air.
Acceleration of gravity near the surface of the earth is 9.8 meters (32.2 feet) per second2. Downward velocity after 2 seconds = 19.2 meters (64.4 feet) per second.
I assume the object starts from rest. The speed will be 16*3 which is 48m/s