10,000.
45
Assuming the digits cannot be repeated, there are 7 combinations with 1 digit, 21 combinations with 2 digits, 35 combinations with 3 digits, 35 combinations with 4 digits, 21 combinations with 5 digits, 7 combinations with 6 digits and 1 combinations with 7 digits. That makes a total of 2^7 - 1 = 127: too many for me to list. If digits can be repeated, there are infinitely many combinations.
Just one.
If the 6 digits can be repeated, there are 1296 different combinations. If you cannot repeat digits in the combination there are 360 different combinations. * * * * * No. That is the number of PERMUTATIONS, not COMBINATIONS. If you have 6 different digits, you can make only 15 4-digit combinations from them.
There are infinite combinations that can make 3879
45
Assuming the digits cannot be repeated, there are 7 combinations with 1 digit, 21 combinations with 2 digits, 35 combinations with 3 digits, 35 combinations with 4 digits, 21 combinations with 5 digits, 7 combinations with 6 digits and 1 combinations with 7 digits. That makes a total of 2^7 - 1 = 127: too many for me to list. If digits can be repeated, there are infinitely many combinations.
To calculate the number of 4-digit combinations that can be made with 4 digits, we can use the formula for permutations. Since there are 10 possible digits (0-9) for each of the 4 positions, the total number of combinations is 10^4, which equals 10,000. This is because each digit can be selected independently for each position, resulting in a total of 10 choices for each of the 4 positions.
120 combinations using each digit once per combination. There are 625 combinations if you can repeat the digits.
Just one.
If the 6 digits can be repeated, there are 1296 different combinations. If you cannot repeat digits in the combination there are 360 different combinations. * * * * * No. That is the number of PERMUTATIONS, not COMBINATIONS. If you have 6 different digits, you can make only 15 4-digit combinations from them.
There are infinite combinations that can make 3879
10C6 = 10*9*8*7/(4*3*2*1) = 210 combinations.
6 for 3-digits, 6 for 2-digits, 3 for 1-digits, and 15 for all of the combinations
Only one: 2468. The order of the digits in a combination does not make a difference.
they are 24 you can make with the numbers 1-4 or any other 4 digits here they are123412431432142313421324213421432431241323412314312431423421341232413214423142134312432141324123* * * * *WRONG!These are permutations, not combinations. In a combination theorder of the digits does not matter so there is only one combination of 4 digits out of 4.
If you have 4 positions, each of which can hold any of the ten digits, you have 10 to the power 4 combinations. If you can have only 4 different digits, you have 4 to the power 4 different combinations.