45
Assuming the digits cannot be repeated, there are 7 combinations with 1 digit, 21 combinations with 2 digits, 35 combinations with 3 digits, 35 combinations with 4 digits, 21 combinations with 5 digits, 7 combinations with 6 digits and 1 combinations with 7 digits. That makes a total of 2^7 - 1 = 127: too many for me to list. If digits can be repeated, there are infinitely many combinations.
Just one.
Oh, dude, you're hitting me with some math vibes here. So, if you have 6 digits to choose from to make a 4-digit combination, you can calculate that by using the formula for permutations: 6P4, which equals 360. So, like, you can make 360 different 4-digit combinations from those 6 digits. Math is wild, man.
There are infinite combinations that can make 3879
45
Assuming the digits cannot be repeated, there are 7 combinations with 1 digit, 21 combinations with 2 digits, 35 combinations with 3 digits, 35 combinations with 4 digits, 21 combinations with 5 digits, 7 combinations with 6 digits and 1 combinations with 7 digits. That makes a total of 2^7 - 1 = 127: too many for me to list. If digits can be repeated, there are infinitely many combinations.
To calculate the number of 4-digit combinations that can be made with 4 digits, we can use the formula for permutations. Since there are 10 possible digits (0-9) for each of the 4 positions, the total number of combinations is 10^4, which equals 10,000. This is because each digit can be selected independently for each position, resulting in a total of 10 choices for each of the 4 positions.
120 combinations using each digit once per combination. There are 625 combinations if you can repeat the digits.
Just one.
Oh, dude, you're hitting me with some math vibes here. So, if you have 6 digits to choose from to make a 4-digit combination, you can calculate that by using the formula for permutations: 6P4, which equals 360. So, like, you can make 360 different 4-digit combinations from those 6 digits. Math is wild, man.
There are infinite combinations that can make 3879
10C6 = 10*9*8*7/(4*3*2*1) = 210 combinations.
6 for 3-digits, 6 for 2-digits, 3 for 1-digits, and 15 for all of the combinations
Only one: 2468. The order of the digits in a combination does not make a difference.
To calculate the number of combinations for the numbers 1248, we need to consider all possible arrangements of the four digits. Since all the digits are unique, there are 4 factorial (4!) ways to arrange them. This equals 4 x 3 x 2 x 1 = 24 combinations.
If you have 4 positions, each of which can hold any of the ten digits, you have 10 to the power 4 combinations. If you can have only 4 different digits, you have 4 to the power 4 different combinations.