To find the number of different groups of 4 that can be made from 17 students, you can use the combination formula, which is given by ( C(n, r) = \frac{n!}{r!(n-r)!} ). In this case, ( n = 17 ) and ( r = 4 ). Therefore, the calculation is ( C(17, 4) = \frac{17!}{4!(17-4)!} = \frac{17!}{4! \times 13!} = \frac{17 \times 16 \times 15 \times 14}{4 \times 3 \times 2 \times 1} = 2380 ). Thus, there are 2,380 different groups of 4 that can be formed from 17 students.
if order does not matter then, (23x22x21x20x19)/(5x4x3x2x1) = 33,649
20 x 19 x 18/3 x 2 = 1,140 groups
The number of different groups of students that can be formed from 16 students depends on the size of the groups being formed. If you are looking for all possible combinations of groups of any size (from 1 to 16), you can use the formula for combinations. The total number of combinations would be (2^{16} - 1) (subtracting 1 to exclude the empty group), which equals 65,535 different groups. If you specify a particular group size, the calculation would be different.
There are only two possibilities... 10 groups of 2 or 5 groups of 4. Unless - you can have varying sized groups - which you didn't specify.
we can make 1 group
30C8 = 5,852,925
if order does not matter then, (23x22x21x20x19)/(5x4x3x2x1) = 33,649
20 x 19 x 18/3 x 2 = 1,140 groups
There are 247 groups comprising 2 or more students.
mutlicellular
2.33333333
To divide a class of 32 students into groups with equal numbers of students, you would need to find the factors of 32. The factors of 32 are 1, 2, 4, 8, 16, and 32. Therefore, you can divide the class into 1 group of 32 students, 2 groups of 16 students, 4 groups of 8 students, 8 groups of 4 students, 16 groups of 2 students, or 32 groups of 1 student. So, there are 6 ways to divide the class into groups with equal numbers of students.
23 x 22 x 21 x 20/4 x 3 x 2 = 8,855 groups
they can be 2 groups of 16, 4 groups of 8, 8 groups of 4, or 16 groups of 2
17.0588
because the country is made up of people from many different backgrounds and groups
When a species is made up of different smaller groups, each of those groups is typically referred to as a population. Populations can exhibit unique characteristics and adaptations based on their specific environmental conditions and genetic makeup.