Assuming you want non-zero vectors, two opposing vectors will give a resultant of zero.
Chat with our AI personalities
24 and 719 is not enough information to define a slope. For 2-dimensional space two ordered pairs are the minimum required.
In real life unit vectors are used for directions, e.g east, north and up(zenith). The unit vector specifies the direction. Gyroscopes maintain a direction and keep things level. Whenever and where ever location is important, unit vectors are a part of real life. Whenever directions are important in your real life, then unit vectors are important. If everything was confined to move along a straight line, then unit vectors would not be important. If you can move in a plane, then unit vectors are important. Moving in space, unit vectors are more important. cars, ships and planes all move in space. Controlling and tracking these all involve unit vectors.
In real life unit vectors are used for directions, e.g east, north and up. The unit vector specifies the direction. Gyroscopes maintain a direction and keep things level. Whenever and where ever location is important, unit vectors are a part of real life. Whenever directions are important in your real life, then unit vectors are important. If everything was confined to move along a straight line, then unit vectors would not be important. If you can move in a plane, then unit vectors are important. Moving in space, unit vectors are more important. cars, ships and planes all move in space. Controlling and tracking these all involve unit vectors.
No.A vector space is a set over a field that has to satisfy certain rules, called axioms. The field in question can be Z2 (see discussion), but unlike a field, a vector's inverse is distinct from the vector. Therefore, in order to satisfy the "inverse elements of addition" axiom for vector spaces, a vector space must minimally (except if it is the null space) have three vectors, v, 0, and v-1. The null space only has one vector, 0.Field's can allow for two distinct elements, unlike vector spaces, because for any given element of a field, for example a, a + (-a) = 0 meets the inverse axiom, but a and -a aren't required to be distinct. They are simply scalar magnitudes, unlike vectors which can often be thought of as having a direction attached to them. That's why the vectors, v and -v are distinct, because they're pointing in opposite directions.
There does not seem to be an under vector room, but there is vector space. Vector space is a structure that is formed by a collection of vectors. This is a term in mathematics.