3
480
To find the probability of getting exactly two heads when tossing a coin three times, we first determine the total number of possible outcomes, which is (2^3 = 8). The favorable outcomes for getting exactly two heads are: HHT, HTH, and THH, totaling 3 outcomes. Therefore, the probability of getting exactly two heads is ( \frac{3}{8} ).
When tossing 4 coins at once, each coin has 2 possible outcomes: heads (H) or tails (T). Therefore, the total number of possible outcomes can be calculated as (2^4), which equals 16. This means there are 16 different combinations of heads and tails when tossing 4 coins.
Heads or tails; each have a probability of 0.5 (assuming a fair coin).
Because there are only 2 outcomes for the flip of a coin, for 5 flips you just need to take (1/2)5, which equals 1/32. This implies there are 32 different outcomes for the case of tossing a coin 5 times. From these 32 outcomes 5 have exactly 4 heads: THHHH, HTHHH, HHTHH, HHHTH, and HHHHT. So the probability of getting exactly 4 heads when you toss a coin 5 times is: P(4H,!T) = 5/32 = 0.15625 ≈ 15.6%
The outcomes are: heads, tails, tails or tails, heads, tails or tails, tails, heads. You can see that there are 3 possible outcomes with exactly 1 head.
480
To find the probability of getting exactly two heads when tossing a coin three times, we first determine the total number of possible outcomes, which is (2^3 = 8). The favorable outcomes for getting exactly two heads are: HHT, HTH, and THH, totaling 3 outcomes. Therefore, the probability of getting exactly two heads is ( \frac{3}{8} ).
Heads or tails; each have a probability of 0.5 (assuming a fair coin).
There are 24 possible outcomes: January-Heads, January-Tails, February-Heads, February-Tails, March-Heads, and so on.
It is 3/8.
three heads two head, one tails one heads, two tails three tails
Because there are only 2 outcomes for the flip of a coin, for 5 flips you just need to take (1/2)5, which equals 1/32. This implies there are 32 different outcomes for the case of tossing a coin 5 times. From these 32 outcomes 5 have exactly 4 heads: THHHH, HTHHH, HHTHH, HHHTH, and HHHHT. So the probability of getting exactly 4 heads when you toss a coin 5 times is: P(4H,!T) = 5/32 = 0.15625 ≈ 15.6%
The sample space for rolling a die is [1, 2, 3, 4, 5, 6] and the sample space for tossing a coin is [heads, tails].
There are 4 possible outcomes, HH, HT, TH, TT. If we assume the odds of tossing heads or tails on any toss is 1/2 (50:50) the odds of tossing heads twice in a row is 1/4 (or 25%).
1heads heads heads 2heads heads tails 3heads tails heads 4heads tails tails 5tails tails tails 6tails tails heads 7tails heads tails 8tails heads heads
The probability that exactly one will land heads up is 0.15625