Is a trigonometric equation which has infinitely many real solutions.
-- A single equation with more than one variable in it has infinitely many solutions. -- An equation where the variable drops out has infinitely many solutions. Like for example x2 + 4x -3 = 0.5 (2x2 + 8x - 6) As mean and ugly as that thing appears at first, you only have to massage it around for a few seconds to get -3 = -3 and that's true no matter what 'x' is. So any value for 'x' is a solution to the equation, which means there are an infinite number of them.
None because without an equal it is not an equation. But if it was in the form of x2+7x+12 = 0 then it would have 2 solutions which are x = -3 and x = -4
If you mean: 2x+y = -6 and 5x-3 = 7 then the solutions are x = -1 and y = -4
Without an equality sign the given expression can't be considered to be an equation and so therefore there are no solutions.
An equation with a degree of three typically has three solutions. However, it is possible for one or more of those solutions to be repeated or complex.
Is a trigonometric equation which has infinitely many real solutions.
Roots, zeroes, and x values are 3 other names for solutions of a quadratic equation.
Equations can have many solutions. The equation of a straight line, for example, defines all points on the line. Even a simple equation such as x+y=5 can have a variety of solutions (x=1 when y=4, x=2 when y=3 and so on)
Strictly speaking the above equation is a tautological equation or an IDENTITY. An identity is true for all values of any variables that appear in it. Thus, the above "equation" is true for all value of x. - that is, it has infinitely many solutions.
A cubic has from 1 to 3 real solutions. The fact that every cubic equation with real coefficients has at least 1 real solution comes from the intermediate value theorem. The discriminant of the equation tells you how many roots there are.
x6 + 3x4 - x2 - 3 = 0(x6 + 3x4) - (x2 + 3) = 0x4(x2 + 3) - (x2 + 3) = 0(x2 + 3)(x4 - 1) = 0(x2 + 3)[(x2)2 - 12] = 0(x2 + 3)(x2 + 1)(x2 - 1) = 0(x2 + 3)(x2 + 1)(x + 1)(x - 1) = 0x2 + 3 = 0 or x2 + 1 = 0 or x + 1 = 0 or x - 1 = 0x2 + 3 = 0x2 = -3x = ±√-3 = ±i√3 ≈ ±1.7ix2 + 1 = 0x2 = -1x = ±√-1 = ±i√1 ≈ ±ix + 1 = 0x = -1x - 1 = 0x = 1The solutions are x = ±1, ±i, ±1.7i.
-- A single equation with more than one variable in it has infinitely many solutions. -- An equation where the variable drops out has infinitely many solutions. Like for example x2 + 4x -3 = 0.5 (2x2 + 8x - 6) As mean and ugly as that thing appears at first, you only have to massage it around for a few seconds to get -3 = -3 and that's true no matter what 'x' is. So any value for 'x' is a solution to the equation, which means there are an infinite number of them.
using the t-table determine 3 solutions to this equation: y equals 2x
They Are infinitely many solutions for an equation when after solving the equation for a variable(let us suppose x),we get the expression 0 = 0. Or Simply L.H.S = R.H.S For Ex. x+3=3+x x can have any value positive or negative, rational or irrational, it doesn't matter the sequence will be infinite. And No Solutions when after solving the equations the expression obtained is unequal For Ex. x+3=x+5 for every value of x, The Value in L.H.S And R.H.S. will differ. Hence It Has No Solutions.
None because without an equal it is not an equation. But if it was in the form of x2+7x+12 = 0 then it would have 2 solutions which are x = -3 and x = -4
Depends on degree of highest term. a^3 + bX^2 + cX + d = 0 has three solutions. And so on. Finding them is another matter.