Roots, zeroes, and x values are 3 other names for solutions of a quadratic equation.
Generally, when we say a quadratic equation has no solutions, it means that the graph does not cross the x-axis at all.In other words, it means that there are no values for x when y equals 0 (because the line y=0 IS the x-axis.)Hope that helps.Jamz159
The answer depends on the nature of the equation. Just as there are different ways of solving a linear equation with a real solution and a quadratic equation with real solutions, and other kinds of equations, there are different methods for solving different kinds of imaginary equations.
It often helps to square both sides of the equation (or raise to some other power, such as to the power 3, if it's a cubic root).Please note that doing this may introduce additional solutions, which are not part of the original equation. When you square an equation (or raise it to some other power), you need to check whether any solutions you eventually get are also solutions of the original equation.
Oh, dude, it's like this: all quadratic equations are polynomials, but not all polynomials are quadratic equations. A quadratic equation is a specific type of polynomial that has a degree of 2, meaning it has a highest power of x^2. So, like, all squares are rectangles, but not all rectangles are squares, you know what I mean?
1) When solving radical equations, it is often convenient to square both sides of the equation. 2) When doing this, extraneous solutions may be introduced - the new equation may have solutions that are not solutions of the original equation. Here is a simple example (without radicals): The equation x = 5 has exactly one solution (if you replace x with 5, the equation is true, for other values, it isn't). If you square both sides, you get: x2 = 25 which also has the solution x = 5. However, it also has the extraneous solution x = -5, which is not a solution to the original equation.
If the discriminant of a quadratic equation is less than zero, it indicates that the equation has no real solutions. Instead, it has two complex (or imaginary) solutions that are conjugates of each other. This means the parabola represented by the quadratic equation does not intersect the x-axis.
They are the roots or zeros. They are also the x-intercepts if they are real numbers.
0 real solutions. There are other solutions in the complex planes (with i, the imaginary number), but there are no real solutions.
Replace the discriminant (the root) in the quadratic formula with zero - that will give you the average. In other words: (average of solutions) = -b/2a.
Generally, when we say a quadratic equation has no solutions, it means that the graph does not cross the x-axis at all.In other words, it means that there are no values for x when y equals 0 (because the line y=0 IS the x-axis.)Hope that helps.Jamz159
Translate to what? I assume you need help interpreting it. The quadratic equation is used to solve the quadratic polynomial, ax2 + bx + c = 0, where a, b, and c can be any number. For example, if you need to solve the equation x2 = 5 + 2x, you first convert it into the standard form mentioned above: x2 - 2x - 5 = 0. Now find the coefficients, a, b, and c. In this case, a = 1, b = -2, c = -5. Finally, you replace these coefficients in the quadratic equation. The "plus-minus" sign simply means that the quadratic equation is a shortcut for two equations - one in which you add, the other in which you subtract, the terms at the top. The solutions given by the quadratic equation are values of "x" that satisfy the equation.
If you refer to actually playing volleyball, you certainly won't need the quadratic equation or other advanced math.
The answer depends on the nature of the equation. Just as there are different ways of solving a linear equation with a real solution and a quadratic equation with real solutions, and other kinds of equations, there are different methods for solving different kinds of imaginary equations.
we study linear equation in other to know more about quadratic equation
The coordinates of every point on the graph, and no other points, are solutions of the equation.
The answer to the question, as stated, is that the other root could be anything. However, if all the coefficients of the quadratic equation are real numbers, then the other root is 1 minus 3i.
It too will have a value of 5