Q: How many visually different arrangements can be made from the letters absolute?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

There are 172 different arrangements.

There are 6! = 720 different arrangements.

In the word "function" you have 8 letters. 6 different letters and 2 equal letters.The number of different arrangements that are possible to get are:6!∙8C2 = 720∙(28) = 20 160 different arrangements.

There are 24.

There are 13 letters in "the world topic". This includes 2 ts and 2 os. Therefore there are 13!/[2!*2!] = 1556755200 different arrangements.

Related questions

There are 172 different arrangements.

That's eight letters, so: 8! = 40320 different arrangements. n! means "factorial", and the expression expands to n*(n - 1)*(n - 2) ... * 2 * 1

64 different arrangements are possible.

There are 6! = 720 different arrangements.

There are 7!/(2!*2!) = 1260 arrangements.

6! = 6x5x4x3x2x1 = 720 arrangements

There are 4 letters in IOWA, all non repeating. Arrangements are 4! or 24.

40,320

In the word "function" you have 8 letters. 6 different letters and 2 equal letters.The number of different arrangements that are possible to get are:6!∙8C2 = 720∙(28) = 20 160 different arrangements.

There are 5!/2! = 60 arrangements.

There are 24.

the arrangements occur. if there are two of the same letter then 12 all different letters then 24 three letters the same then 5 four letters the same then 1