Want this question answered?
Be notified when an answer is posted
Let P = { x0, x1, x2, ..., xn} be a partition of the closed interval [a, b] and f a bounded function defined on that interval. Then: * the upper sum of fwith respect to the partition P is defined as: U(f, P) = cj (xj - xj-1) where cj is the supremum of f(x)in the interval [xj-1, xj]. * the lower sum of f with respect to the partition P is defined as L(f, P) = dj (xj - xj-1) where dj is the infimum of f(x) in the interval [xj-1, xj].
Tropical year
This is because the square root function, with the range defined as the non-negative real numbers, is monotonic increasing throughout.
A meter is currently defined as the length of the path travelled by light in vacuum during a time interval of 1 / 299,792,458 of a second.
A variable defined on a continuous interval as opposed to one that can take only discrete values.
One.
Yes. A well-known example is the function defined as: f(x) = * 1, if x is rational * 0, if x is irrational Since this function has infinitely many discontinuities in any interval (it is discontinuous in any point), it doesn't fulfill the conditions for a Riemann-integrable function. Please note that this function IS Lebesgue-integrable. Its Lebesgue-integral over the interval [0, 1], or in fact over any finite interval, is zero.
Let P = { x0, x1, x2, ..., xn} be a partition of the closed interval [a, b] and f a bounded function defined on that interval. Then: * the upper sum of fwith respect to the partition P is defined as: U(f, P) = cj (xj - xj-1) where cj is the supremum of f(x)in the interval [xj-1, xj]. * the lower sum of f with respect to the partition P is defined as L(f, P) = dj (xj - xj-1) where dj is the infimum of f(x) in the interval [xj-1, xj].
Tropical year
The question was, let f(x) = 2x if x < -2, ...2x - 2 if -2 <= x <= 2, and ...-2 if x < -2; and what is its graph. You might call this a piecewise-defined linear function. The easiest way to determine this is to look at each interval and see: * Is the function a straight line on each whole interval? * Can you pick two points on each interval so that they match the equation? * And is it a function? Do that and you'll be able to tell. E-mail me if you have more questions on this.
The number of values that lie in an interval depends on the specific range and how it is defined. Generally, it can vary from zero values to an infinite number of values within the interval.
You take the derivative of the function. The derivative is another function that tells you the slope of the original function at any point. (If you don't know about derivatives already, you can learn the details on how to calculate in a calculus textbook. Or read the Wikipedia article for a brief introduction.) Once you have the derivative, you solve it for zero (derivative = 0). Any local maximum or minimum either has a derivative of zero, has no defined derivative, or is a border point (on the border of the interval you are considering). Now, as to the intervals where the function increase or decreases: Between any such maximum or minimum points, you take any random point and check whether the derivative is positive or negative. If it is positive, the function is increasing.
This is because the square root function, with the range defined as the non-negative real numbers, is monotonic increasing throughout.
A meter is currently defined as the length of the path travelled by light in vacuum during a time interval of 1 / 299,792,458 of a second.
A function statement is a block where the function is declared and defined.
Yes, if the function is equal to zero at x=0, the function is considered defined at that point. The function's value at x=0 does not impact its overall definition.
A variable defined on a continuous interval as opposed to one that can take only discrete values.