In a plane, each vector has only one orthogonal vector (well, two, if you count the negative of one of them). Are you sure you don't mean the normal vector which is orthogonal but outside the plane (in fact, orthogonal to the plane itself)?
The zero vector is not perpendicular to all vectors, but it is orthogonal to all vectors.
The direction of a vector is defined in terms of its components along a set of orthogonal vectors (the coordinate axes).
There is no maximum. A vector can be defined for a hyperspace with any number of dimensions. Such a hyperspace can be described using an orthogonal system of axes and the vector can be split into its components along each one of these axes.
A vector comprises its components, which are orthogonal. If just one of them has magnitude and direction, then the resultant vector has magnitude and direction. Example:- If A is a vector and Ax is zero and Ay is non-zero then, A=Ax+Ay A=0+Ay A=Ay
In a plane, each vector has only one orthogonal vector (well, two, if you count the negative of one of them). Are you sure you don't mean the normal vector which is orthogonal but outside the plane (in fact, orthogonal to the plane itself)?
Orthogonal signal space is defined as the set of orthogonal functions, which are complete. In orthogonal vector space any vector can be represented by orthogonal vectors provided they are complete.Thus, in similar manner any signal can be represented by a set of orthogonal functions which are complete.
Every vector can be represented as the sum of its orthogonal components. For example, in a 2D space, any vector can be expressed as the sum of two orthogonal vectors along the x and y axes. In a 3D space, any vector can be represented as the sum of three orthogonal vectors along the x, y, and z axes.
Orthogonal ones, for example.
The zero vector is not perpendicular to all vectors, but it is orthogonal to all vectors.
You don't. Knowing two of the vector's orthogonal components doesn't tell you what the third one is. It could be absolutely anything.
The direction of a vector is defined in terms of its components along a set of orthogonal vectors (the coordinate axes).
No. The answer does assume that "components" are defined in the usual sense - that is, a decomposition of the vector along a set of orthogonal axes.
There is no maximum. A vector can be defined for a hyperspace with any number of dimensions. Such a hyperspace can be described using an orthogonal system of axes and the vector can be split into its components along each one of these axes.
Orthogonal and perpendicular are essentially the same thing: When two lines, planes, etc. intersect at a right angle, or 90 degrees, they are orthogonal/perpendicular.Orthogonal is simply a term used more commonly for vectors, when they have a scalar/inner/dot product of 0, as:vector u X vector v = (length of vector u) X (length of vector v) X cos @ ,@ being the angle between the two vectors.When the scalar product is 0, that is because @ is 90 degrees, and cos 90 = 0. Therefore, the vectors u and v are orthogonal.
A vector comprises its components, which are orthogonal. If just one of them has magnitude and direction, then the resultant vector has magnitude and direction. Example:- If A is a vector and Ax is zero and Ay is non-zero then, A=Ax+Ay A=0+Ay A=Ay
A perpendicular vector is a vector that forms a right angle (90 degrees) with another vector in a given space. This means that the dot product of two perpendicular vectors is zero, indicating that they are orthogonal to each other.