answersLogoWhite

0

What have we got to prove?

Whether we have to prove a triangle as an Isoseles triangle or prove a property of an isoseles triangle. Hey, do u go to ALHS, i had that same problem on my test today. Greenehornet15@Yahoo.com

User Avatar

Wiki User

16y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

How can you prove that a triangle is an isosceles triangle with some examples?

An isosceles triangle has 3 sides 2 of which are equal in length An isosceles triangle has 3 interior angles 2 of which are the same size


How do you prove the diagonals of an isosceles triangle congruent?

You can't because triangles do not have diagonals but an isosceles triangle has 2 equal sides


IF you are using this figure to prove the isosceles triangle theorem would be the best strategy?

To prove the Isosceles Triangle Theorem using a figure, the best strategy is to focus on the properties of the triangle's angles and sides. Start by labeling the two equal sides and their opposite angles. Then, use triangle congruence criteria, such as the Side-Angle-Side (SAS) or Angle-Side-Angle (ASA), to establish that the two triangles formed by drawing a line from the vertex to the base are congruent. This congruence will demonstrate that the base angles are equal, thereby proving the theorem.


What do you need to do to prove a line is an angle bisector of an angle?

Draw a perpendicular to that line and extend the arms of the angle to meed the perpendicular drawn earlier. Check if the line is bisecting the perpendicular, if yes, then the line is a bisector of the angle. :)


Nina has prepared the following two-column proof below. She is given that and angOLN and cong and angLNO and she is trying to prove that OL and cong ON. Triangle OLN where angle OLN is congruent to an?

To prove that ( OL \cong ON ), Nina can use the properties of isosceles triangles. Given that ( \angle OLN \cong \angle LNO ) and ( \triangle OLN ) has these equal angles, by the Isosceles Triangle Theorem, the sides opposite those angles must be congruent. Therefore, ( OL \cong ON ) follows from the fact that the angles are congruent.

Related Questions

Angle bisector of angleA of triangleABC is perpendicular to BC prove it is isosceles?

Let D represent the point on BC where the bisector of A intersects BC. Because AD bisects angle A, angle BAD is congruent to CAD. Because AD is perpendicular to BC, angle ADB is congruent to ADC (both are right angles). The line segment is congruent to itself. By angle-side-angle (ASA), we know that triangle ADB is congruent to triangle ADC. Therefore line segment AB is congruent to AC, so triangle ABC is isosceles.


What is the angle bisector concurrency theorem?

the definition of an angle bisector is a line that divides an angle into two equal halves. So you need only invoke the definition to prove something is an angle bisector if you already know that the two angles are congruent.


How do i prove if the base angles of a triangle are congruent then the triangle is isosceles?

Suppose you have triangle ABC with base BC, and angle B = angle C. Draw the altitude AD.Considers triangles ABD and ACDangle ABD = angle ACD (given)angle ADB = 90 deg = angle ACDtherefore angle BAD = angle CADAlso the side AD is common to the two triangles.Therefore triangle ABD is congruent to triangle ACD (ASA) and so AB = AC.That is, triangle ABC is isosceles.


If two angle bisectors of a triangle are congruent then prove that triangle is isosceles?

The two angle bisectors of a triangle are congruent the those two angles are congruent. The angles are bisected the same meaning that the whole and half angle are the same. For example if they are bisected at the whole angle 50 each, then each half is 25. The bisectors really don't mean anything and all you need is 50 to know it's isosceles. 50 and 50 is 100 and the left over for the last angle is 80 adding to 180. AND overall any 2 congruent angles in a triangle have the same congruent legs making it isosceles.


How can you prove that a triangle is an isosceles triangle with some examples?

An isosceles triangle has 3 sides 2 of which are equal in length An isosceles triangle has 3 interior angles 2 of which are the same size


How do you prove an isosceles triangle?

an isisceles triangle is a triangle with atleast two sides congruent.


How do you prove the diagonals of an isosceles triangle congruent?

You can't because triangles do not have diagonals but an isosceles triangle has 2 equal sides


Is an isosceles obtuse triangle possible?

Yes it is possible. Obtuse means the triangle contains an angle which is greater than 90 degrees, and isosceles means the triangle has two sides of the same length. So to prove this in the easiest way possible, you can make a dot on your page, measure 91 or more degrees and draw two equal length lines out at this angle, then connect these two lines to make an obtuse isosceles triangle.


How do you prove that isosceles triangles have three equal sides?

If You Prove An Isosceles Triangle To Have Three Equal Sides. You Now Have Disproved It As Being An Isosceles Triangle. So Even If You Could You Would Now Have An Equilateral Triangle. I Just Can`t See A Way This Can Be Done.


Is an equilateral triangle always or sometimes called an isosceles?

If you can only prove two sides of an apparently equilateral triangle to be congruent then you have to use isosceles.


What do you need to do to prove a line is an angle bisector of an angle?

Draw a perpendicular to that line and extend the arms of the angle to meed the perpendicular drawn earlier. Check if the line is bisecting the perpendicular, if yes, then the line is a bisector of the angle. :)


How can you prove a triangle ABC is isosceles if angle BAD is congruent to angle CAD and line AD is perpendicular to line Bc?

Given: AD perpendicular to BC; angle BAD congruent to CAD Prove: ABC is isosceles Plan: Principle a.s.a Proof: 1. angle BAD congruent to angle CAD (given) 2. Since AD is perpendicular to BC, then the angle BDA is congruent to the angle CDA (all right angles are congruent). 3. AD is congruent to AD (reflexive property) 4. triangle BAD congruent to triangle CAD (principle a.s.a) 5. AB is congruent to AC (corresponding parts of congruent triangles are congruent) 6. triangle ABC is isosceles (it has two congruent sides)