answersLogoWhite

0

To start, try breaking down

sin3x using a double angle formula.

Message me if you need more help!

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan

Add your answer:

Earn +20 pts
Q: How would you solve sin3x equals sinx?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Solve 6sinx equals 1 plus 9sinx algebraically over the domain 0 is greater than or equal to x is less than 2pi?

6*sinx = 1 + 9*sinx => 3*sinx = -1 => sinx = -1/3Let f(x) = sinx + 1/3then the solution to sinx = -1/3 is the zero of f(x)f'(x) = cosxUsing Newton-Raphson, the solutions are x = 3.4814 and 5.9480It would have been simpler to solve it using trigonometry, but the question specified an algebraic solution.


How do you solve 6sin x 1 plus 9sin x algebraically over the domain 0 x 2pi?

6*sinx = 1 + 9*sinx => 3*sinx = -1 => sinx = -1/3Let f(x) = sinx + 1/3then the solution to sinx = -1/3 is the zero of f(x)f'(x) = cosxUsing Newton-Raphson, the solutions are x = 3.4814 and 5.9480It would have been simpler to solve it using trigonometry, but the question specified an algebraic solution.


How do you solve 1 minus cosx divided by sinx plus sinx divided by 1 minus cosx to get 2cscx?

(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx


Prove this identity 1 plus cosx divide by sinx equals sinx divide by 1-cosx?

2


Can you Show 1 over sinx cosx - cosx over sinx equals tanx?

From the Pythagorean identity, sin2x = 1-cos2x. LHS = 1/(sinx cosx) - cosx/sinx LHS = 1/(sinx cosx) - (cosx/sinx)(cosx/cosx) LHS = 1/(sinx cosx) - cos2x/(sinx cosx) LHS = (1- cos2x)/(sinx cosx) LHS = sin2x /(sinx cosx) [from Pythagorean identity] LHS = sin2x /(sinx cosx) LHS = sinx/cosx LHS = tanx [by definition] RHS = tanx LHS = RHS and so the identity is proven. Q.E.D.