answersLogoWhite

0

= cos(x)-(cos3(x))/3

* * * * *

Right numbers, wrong sign!

Int(sin3x)dx = Int(sin2x*sinx)dx = Int[(1-cos2x)*sinx]dx

= Int(sinx)dx + Int[-cos2x*sinx]dx

Int(sinx)dx = -cosx . . . . . (I)

Int[-cos2x*sinx]dx

Let u = cosx, the du = -sinxdx

so Int(u2)du = u3/3 = 1/3*cos3x . . . . (II)

So Int(sin3x)dx = 1/3*cos3x - cosx + C

Alternatively,

using the multiple angle identities, you can show that

sin3x = 1/4*[3sinx - sin3x]

which gives

Int(sin3x)dx = 1/4*{1/3*cos(3x) - 3cosx} + C

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

JudyJudy
Simplicity is my specialty.
Chat with Judy
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
More answers

Int(sin3x)dx = Int(sin2x*sinx)dx = Int[(1-cos2x)*sinx]dx

= Int(sinx)dx + Int[-cos2x*sinx]dx

Int(sinx)dx = -cosx . . . . . (I)

Int[-cos2x*sinx]dx

Let u = cosx, the du = -sinxdx

so Int(u2)du = u3/3 = 1/3*cos3x . . . . (II)

So Int(sin3x)dx = 1/3*cos3x - cosx + C

Alternatively,

using the multiple angle identities, you can show that

sin3x = 1/4*[3sinx - sin3x]

which gives

Int(sin3x)dx = 1/4*{1/3*cos(3x) - 3cosx} + C

User Avatar

Wiki User

11y ago
User Avatar

Add your answer:

Earn +20 pts
Q: What is the integral of sin x cubed?
Write your answer...
Submit
Still have questions?
magnify glass
imp