true
Yes
This is not always true.
"If a number is an integer, then it is a whole number." In math terms, the converse of p-->q is q-->p. Note that although the statement in the problem is true, the converse that I just stated is not necessarily true.
No, not always. It depends on if the original biconditional statement is true. For example take the following biconditional statement:x = 3 if and only if x2 = 9.From this biconditional statement we can extract two conditional statements (hence why it is called a bicondional statement):The Conditional Statement: If x = 3 then x2 = 9.This statement is true. However, the second statement we can extract is called the converse.The Converse: If x2=9 then x = 3.This statement is false, because x could also equal -3. Since this is false, it makes the entire original biconditional statement false.All it takes to prove that a statement is false is one counterexample.
Proof by Converse is a logical fallacy where one asserts that if the converse of a statement is true, then the original statement must also be true. However, this is not always the case as the converse of a statement may not always hold true even if the original statement is true. It is important to avoid this error in logical reasoning.
No. Consider the statement "If I'm alive, then I'm not dead." That statement is true. The converse is "If I'm not dead, then I'm alive.", which is also true.
Statement: All birds lay eggs. Converse: All animals that lay eggs are birds. Statement is true but the converse statement is not true. Statement: If line A is perpendicular to line B and also to line C, then line B is parallel to line C. Converse: If line A is perpendicular to line B and line B is parallel to line C, then line A is also perpendicular to line C. Statement is true and also converse of statement is true. Statement: If a solid bar A attracts a non-magnet B, then A must be a magnet. Converse: If a magnet A attracts a solid bar B, then B must be non-magnet. Statement is true but converse is not true (oppposite poles of magnets attract).
The conjunction of a conditional statement and its converse is known as a biconditional statement. It states that the original statement and its converse are both true.
No.
always true
always true
A conditional statement is true if, and only if, its contrapositive is true.
No, the converse of a statement does not necessarily have to be true. In this case, the original statement "If you are hungry then you are not happy" does not imply that its converse "If you are not happy then you must be hungry" is always true. It is possible to be unhappy for reasons other than hunger.
The Answer: NO
true
Converses of a true if-then statement can be true sometimes. For example, you might have "If today is Friday, then tomorrow is Saturday," and "If tomorrow is Saturday, then today is Friday." Both the above conditional statement and its converse are true. However, sometimes a converse can be false, such as: "If an animal is a fish, then it can swim." and "If an animal can swim, it is a fish." The converse is not true, as some animals that can swim (such as otters) are not fish.