always true
Converses of a true if-then statement can be true sometimes. For example, you might have "If today is Friday, then tomorrow is Saturday," and "If tomorrow is Saturday, then today is Friday." Both the above conditional statement and its converse are true. However, sometimes a converse can be false, such as: "If an animal is a fish, then it can swim." and "If an animal can swim, it is a fish." The converse is not true, as some animals that can swim (such as otters) are not fish.
Let's take an example.If it is raining (then) the match will be cancelled.A conditional statement is false if and only if the antecedent (it is raining) is true and the consequent (the match will be cancelled) is false. Thus the sample statement will be false if and only if it is raining but the match still goes ahead.By convention, if the antecedent is false (if it isn't raining) then the statement as a whole is considered true regardless of whether the match takes place or not.To recap: if told that the sample statement is false, we can deduce two things: It is raining is a true statement, and the match will be cancelled is a false statement. Also, we know a conditional statement with a false antecedent is always true.The converse of the statement is:If the match is cancelled (then) it is raining.Since we know (from the fact that the original statement is false) that the match is cancelled is false, the converse statement has a false antecedent and, by convention, such statements are always true.Thus the converse of a false conditional statement is always true. (A single example serves to show it's true in all cases since the logic is identical no matter what specific statements you apply it to.)If you are familiar with truth tables, the explanation is much easier. Here is the truth table for A = X->Y (i.e. A is the statement if X then Y) and B = Y->X (i.e. B is the converse statement if Y then X).X Y A BF F T TF F T TT F F TF T T FLooking at the last two rows of the A and B columns, when either of the statements is false, its converse is true.
the converse of this conditional is true
In the conditional statement "If the dress is yellow, then Alan likes the dress," the hypothesis is "the dress is yellow." This part of the statement sets the condition under which the conclusion (that Alan likes the dress) is assessed. If the hypothesis is true, then the conclusion is expected to follow, but if the hypothesis is false, the truth of the conclusion is not determined by this statement alone.
The number of results you can get from a Boolean is two. You can either have a statement be true or false. this is because Boolean data is the result of conditional statements, which can be either true or false.
always true
A biconditional is the conjunction of a conditional statement and its converse.
true
The true biconditional statement that can be formed is: "A number is even if and only if it is divisible by 2." This statement combines both the original conditional ("If a number is divisible by 2, then it is even") and its converse ("If a number is even, then it is divisible by 2"), establishing that the two conditions are equivalent.
No, the conditional statement and its converse are not negations of each other. A conditional statement has the form "If P, then Q," while its converse is "If Q, then P." The negation of a conditional statement would be "P is true and Q is false," which is distinct from the converse. Thus, they represent different logical relationships.
The statement is false. The conditional statement "If P, then Q" and its converse "If Q, then P" are distinct statements, but the negation of the converse would be "It is not the case that if Q, then P." Thus, the conditional and the negation of the converse are not equivalent or directly related.
A conditional statement is true if, and only if, its contrapositive is true.
This is not always true.
No. Consider the statement "If I'm alive, then I'm not dead." That statement is true. The converse is "If I'm not dead, then I'm alive.", which is also true.
false
A true conditional statement is "If it is raining, then the ground is wet." This statement is true because rain typically causes the ground to become wet. However, its converse, "If the ground is wet, then it is raining," is false because the ground could be wet for other reasons, such as someone watering the garden.
Converses of a true if-then statement can be true sometimes. For example, you might have "If today is Friday, then tomorrow is Saturday," and "If tomorrow is Saturday, then today is Friday." Both the above conditional statement and its converse are true. However, sometimes a converse can be false, such as: "If an animal is a fish, then it can swim." and "If an animal can swim, it is a fish." The converse is not true, as some animals that can swim (such as otters) are not fish.