If everything to the left of -9 on a graph is shaded, the inequality represented is ( x < -9 ). This means that all values of ( x ) that are less than -9 are included in the solution set. The shaded region on the graph indicates that the inequality does not include -9 itself, which is typically represented by an open circle at that point.
The shaded area of the graph of an inequality show the solution to the inequality. For example, if the area below y = x is shaded it is showing those ordered pairs which solve y < x.
To determine the inequality that represents a graph, you need to analyze its features, such as the shaded region and the boundary line. If the boundary line is solid, the inequality includes "≤" or "≥," while a dashed line indicates "<" or ">". The shaded region shows where the values satisfy the inequality. By identifying the slope and y-intercept of the line, you can formulate the correct inequality.
A picture of an inequality typically represents a mathematical relationship where one quantity is not equal to another, often illustrated on a number line or a graph. For example, on a number line, an inequality such as (x < 3) would be shown with an open circle at 3 and a shaded line extending to the left, indicating all values less than 3. In a graph, inequalities can create shaded regions, such as in systems of inequalities, where solutions to the inequalities are visually represented. Overall, these visual representations help to clarify the concept of inequality in a more intuitive way.
true
Pick a sample point in the shaded area and plug it into the equation and see if it makes it true.
The shaded area of the graph of an inequality show the solution to the inequality. For example, if the area below y = x is shaded it is showing those ordered pairs which solve y < x.
The graph of an inequality is a region, not a line.
The shaded region above or below the line in the graph of a linear inequality is called the solution region. This region represents all the possible values that satisfy the inequality. Points within the shaded region are solutions to the inequality, while points outside the shaded region are not solutions.
To write a compound inequality from a graph, first identify the critical points where the graph changes direction or has boundaries. Determine the intervals represented by the shaded regions—if they are open or closed. Then, express the relationship between these intervals using "and" (for overlapping regions) or "or" (for separate regions) to form the compound inequality. Finally, use inequality symbols to represent the boundaries of each interval accurately.
To determine the inequality that represents a graph, you need to analyze its features, such as the shaded region and the boundary line. If the boundary line is solid, the inequality includes "≤" or "≥," while a dashed line indicates "<" or ">". The shaded region shows where the values satisfy the inequality. By identifying the slope and y-intercept of the line, you can formulate the correct inequality.
See the accompanying answer:
One variable inequality- graph the point on the number line then choose a point on the point, to the left and to the right to see what gets shaded. Two variable inequality- graph the line on grid paper then choose a point on the line, to the left and to the right to see what gets shaded.
A picture of an inequality typically represents a mathematical relationship where one quantity is not equal to another, often illustrated on a number line or a graph. For example, on a number line, an inequality such as (x < 3) would be shown with an open circle at 3 and a shaded line extending to the left, indicating all values less than 3. In a graph, inequalities can create shaded regions, such as in systems of inequalities, where solutions to the inequalities are visually represented. Overall, these visual representations help to clarify the concept of inequality in a more intuitive way.
it is called a half plane :)
True
true
Pick a sample point in the shaded area and plug it into the equation and see if it makes it true.